BOUNDS FOR BLOW-UP SOLUTIONS OF A SEMILINEAR PSEUDO-PARABOLIC EQUATION WITH A MEMORY TERM AND LOGARITHMIC NONLINEARITY IN VARIABLE SPACE

被引:4
作者
Abita, Rahmoune [1 ]
机构
[1] Lab Pure & Appl Math, Dept Tech Sci, Laghouat 03000, Algeria
关键词
LAPLACIAN EVOLUTION-EQUATIONS; GLOBAL SOLUTION; ELECTRORHEOLOGICAL FLUIDS; HEAT-EQUATION; LEBESGUE; TIME;
D O I
10.7146/math.scand.a-133418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the initial boundary value problem for a pseudo-parabolic equation under the influence of a linear memory term and a logarithmic nonlinear source term ut(1) - Delta ut + integral(t)(0) g(t - s)Delta u(x, s) ds - Delta u = |u|p(center dot)-2 u ln(|u|), with a Dirichlet boundary condition. Under appropriate assumptions about the relaxation function g, the initial data u0 and the function exponent p, we not only set the lower bounds for the blow-up time of the solution when blow-up occurs, but also by assuming that the initial energy is negative, we give a new blow-up criterion and an upper bound for the blow-up time of the solution.
引用
收藏
页码:553 / 572
页数:20
相关论文
共 43 条
[1]  
Abita R, 2022, APPL ANAL, V101, P1871
[2]  
Abita R., 2021, APPL ANAL, P1
[3]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[4]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[5]   On some new non-linear diffusion models for the image filtering [J].
Alaoui, Mohammed Kbiri ;
Nabil, Tamer ;
Altanji, Mohamed .
APPLICABLE ANALYSIS, 2014, 93 (02) :269-280
[6]  
AlShin AB, 2011, DEGRUYTER SER NONLIN, V15, P1
[7]   Blow-up of solutions to parabolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2633-2645
[8]  
Barenblatt G.I., 1989, Theory of fluid flows through natural rocks
[9]  
Barenblatt G I., 1960, Journal of Applied Mathematics and Mechanics, V24, P1286, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[10]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+