Opposing effects of 15-lipoxygenase-1 and-2 metabolites on MAPK signaling in prostate -: Alteration in peroxisome proliferator-activated receptor γ

被引:139
作者
Hsi, LC [1 ]
Wilson, LC [1 ]
Eling, TE [1 ]
机构
[1] NIEHS, Eicosanoid Biochem Sect, Mol Carcinogenesis Lab, NIH, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1074/jbc.M203522200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human prostate tumors have elevated levels of 15-lipoxygenase-1 (15-LOX-1) and data suggest that 15-LOX-1 may play a role in the development of prostate cancer. In contrast, 15-LOX-2 expression is higher in normal rather than in tumor prostate tissue and appears to suppress cancer development. We recently reported that 13-(S)-HODE, the 15-LOX-1 metabolite, up-regulates the MA-P kinase signaling pathway and subsequently down-regulates PPARgamma in human colorectal carcinoma cells. To determine whether this mechanism is applicable to prostate cancer and what the effects of 15-LOX-2 are, we investigated the effect of 15-LOX-1, 15-LOX-2, and their metabolites on epidermal growth factor (EGF)- and insulin-like growth factor (IGF)-1 signaling in prostate carcinoma cells. In PC3 cells, 13-(S)-HODE, a 15-LOX-1 metabolite, upregulated MAP kinase while in contrast 15-(S)-HETE, a 15-LOX-2 metabolite, down-regulated MAP kinase. As a result, 13-(S)-HODE increased PPARgamma phosphorylation while a subsequent decrease in PPARgamma phosphorylation was observed with 15-(S)-HETE. Thus, 15-LOX metabolites have opposing effects on the regulation of the MAP kinase signaling pathway and a downstream target of MAP kinase signaling like PPARgamma. In addition to the EGF signaling pathway, the IGF signaling pathway appears to be linked to prostate cancer. 13-(S)-HODE and 15-(S)-HETE up-regulate or down-regulate, respectively, both the MAPK and Akt pathways after activation with IGF-1. Thus, the effect of these lipid metabolites is not solely restricted to EGF signaling and not solely restricted to MAPK signaling. These results provide a plausible mechanism to explain the apparent opposing effects 15-LOX-1 and 15-LOX-2 play in prostate cancer.
引用
收藏
页码:40549 / 40556
页数:8
相关论文
共 42 条
[1]   Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site [J].
Adams, M ;
Reginato, MJ ;
Shao, DL ;
Lazar, MA ;
Chatterjee, VK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :5128-5132
[2]   The role of MAP kinase in TPA-mediated cell cycle arrest of human breast cancer cells [J].
Alblas, J ;
Slager-Davidov, R ;
Steenbergh, PH ;
Sussenbach, JS ;
van der Burg, B .
ONCOGENE, 1998, 16 (01) :131-139
[3]   Discovery of a second 15S-lipoxygenase in humans [J].
Brash, AR ;
Boeglin, WE ;
Chang, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6148-6152
[4]   Activation of PPARγ leads to inhibition of anchorage-independent growth of human colorectal cancer cells [J].
Brockman, JA ;
Gupta, RA ;
DuBois, RN .
GASTROENTEROLOGY, 1998, 115 (05) :1049-1055
[5]  
Butler R, 2000, CELL GROWTH DIFFER, V11, P49
[6]  
Camp HS, 1997, J BIOL CHEM, V272, P10811
[7]  
Chang TH, 2000, CANCER RES, V60, P1129
[8]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241
[9]  
DiGiovanni J, 2000, CANCER RES, V60, P1561
[10]   Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice [J].
DiGiovanni, J ;
Kiguchi, K ;
Frijhoff, A ;
Wilker, E ;
Bol, DK ;
Beltrán, L ;
Moats, S ;
Ramirez, A ;
Jorcano, J ;
Conti, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3455-3460