Prescribed Schouten Tensor in Locally Conformally Flat Manifolds

被引:1
|
作者
Carvalho, Marcos Tulio [1 ]
Pieterzack, Mauricio [1 ]
Pina, Romildo [1 ]
机构
[1] Univ Fed Goias, Goiania, Go, Brazil
关键词
Schouten tensor; conformal metric; Schouten curvature functions; RICCI CURVATURE; METRICS; EQUATION; GEOMETRY;
D O I
10.1007/s00025-019-1086-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the pseudo-Euclidean space (R-n, g), with n >= 3 and g(ij) = delta(ij epsilon i), where epsilon(i) = +/- 1, with at least one positive ei and non-diagonal symmetric tensors T = Sigma(i, j) f(ij)(x)dx(i) circle times dx(j). Assuming that the solutions are invariant by the action of a translation (n-1)- dimensional group, we find the necessary and sufficient conditions for the existence of a metric (g) over bar conformal to g, such that the Schouten tensor (g) over bar, is equal to T. From the obtained results, we show that for certain functions h, defined in R-n, there exist complete metrics (g) over bar, conformal to the Euclidean metric g, whose curvature sigma(2)((g) over bar) = h.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A sphere theorem on locally conformally flat even-dimensional manifolds
    Catino, Giovanni
    Djadli, Zindine
    Ndiaye, Cheikh Birahim
    MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 237 - 247
  • [42] ON 4-DIMENSIONAL LOCALLY CONFORMALLY FLAT ALMOST KAHLER MANIFOLDS
    Krolikowski, Wieslaw
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 215 - 223
  • [43] A note on 4-dimensional locally conformally flat Walker manifolds
    S. Azimpour
    M. Chaichi
    M. Toomanian
    Journal of Contemporary Mathematical Analysis, 2007, 42 (5) : 270 - 277
  • [44] A semi-Kahler and locally conformally Hermitian-flat manifolds
    Yachou, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 225 - 228
  • [45] Exact Solutions of Einstein Field Equation in Locally Conformally Flat Manifolds
    Adriano, Levi Rosa
    de Menezes, Ilton Ferreira
    Pieterzack, Mauricio Donizetti
    Pina, Romildo da Silva
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [46] Locally Conformally Flat Doubly Twisted Product Complex Finsler Manifolds
    Xiao, Wei
    He, Yong
    Li, Shuwen
    Ni, Qihui
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [47] On locally conformally flat manifolds with finite total Q-curvature
    Lu, Zhiqin
    Wang, Yi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (04)
  • [48] ON LOCALLY CONFORMALLY FLAT WEAKLY-EINSTEIN FOUR-MANIFOLDS
    Haji-Badali, Ali
    Zaeim, Amirhesam
    Atashpeykar, Parvane
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 73 - 86
  • [49] A sphere theorem on locally conformally flat even-dimensional manifolds
    Giovanni Catino
    Zindine Djadli
    Cheikh Birahim Ndiaye
    Manuscripta Mathematica, 2011, 136 : 237 - 247
  • [50] Exact Solutions of Einstein Field Equation in Locally Conformally Flat Manifolds
    Levi Rosa Adriano
    Ilton Ferreira de Menezes
    Mauricio Donizetti Pieterzack
    Romildo da Silva Pina
    Results in Mathematics, 2021, 76