Prescribed Schouten Tensor in Locally Conformally Flat Manifolds

被引:1
|
作者
Carvalho, Marcos Tulio [1 ]
Pieterzack, Mauricio [1 ]
Pina, Romildo [1 ]
机构
[1] Univ Fed Goias, Goiania, Go, Brazil
关键词
Schouten tensor; conformal metric; Schouten curvature functions; RICCI CURVATURE; METRICS; EQUATION; GEOMETRY;
D O I
10.1007/s00025-019-1086-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the pseudo-Euclidean space (R-n, g), with n >= 3 and g(ij) = delta(ij epsilon i), where epsilon(i) = +/- 1, with at least one positive ei and non-diagonal symmetric tensors T = Sigma(i, j) f(ij)(x)dx(i) circle times dx(j). Assuming that the solutions are invariant by the action of a translation (n-1)- dimensional group, we find the necessary and sufficient conditions for the existence of a metric (g) over bar conformal to g, such that the Schouten tensor (g) over bar, is equal to T. From the obtained results, we show that for certain functions h, defined in R-n, there exist complete metrics (g) over bar, conformal to the Euclidean metric g, whose curvature sigma(2)((g) over bar) = h.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Prescribed Schouten Tensor in Locally Conformally Flat Manifolds
    Marcos Tulio Carvalho
    Mauricio Pieterzack
    Romildo Pina
    Results in Mathematics, 2019, 74
  • [2] Prescribed diagonal Schouten tensor in locally conformally flat manifolds
    Pieterzack M.
    Pina R.
    Journal of Geometry, 2013, 104 (2) : 341 - 355
  • [3] Prescribed curvature tensor in locally conformally flat manifolds
    Pina, Romildo
    Pieterzack, Mauricio
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 438 - 447
  • [4] Prescribed diagonal Ricci tensor in locally conformally flat manifolds
    Pina, Romildo
    Adriano, Levi
    Pieterzack, Mauricio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 893 - 904
  • [5] Schouten curvature functions on locally conformally flat Riemannian manifolds
    Hu, Zejun
    Li, Haizhong
    Simon, Udo
    JOURNAL OF GEOMETRY, 2008, 88 (1-2) : 75 - 100
  • [6] Closed hypersurfaces of prescribed mean curvature in locally conformally flat Riemannian manifolds
    Gerhardt, C
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, 48 (03) : 587 - 613
  • [7] INVARIANTS OF LOCALLY CONFORMALLY FLAT MANIFOLDS
    BRANSON, T
    GILKEY, P
    POHJANPELTO, J
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (03) : 939 - 953
  • [8] On a class of locally conformally flat manifolds
    Chang, SYA
    Hang, FB
    Yang, PC
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (04) : 185 - 209
  • [9] CONFORMAL FLAT MANIFOLDS AND A PINCHING PROBLEM ON THE SCHOUTEN TENSOR
    Ji Nan
    Ma Xing-hua
    Xia Yun-wei
    Peng Ya-Mian
    DCABES 2009: THE 8TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, PROCEEDINGS, 2009, : 99 - 100
  • [10] Gap theorems for locally conformally flat manifolds
    Ma, Li
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1414 - 1429