Solution of multi-dimensional Klein-Gordon-Zakharov and Schrodinger/Gross-Pitaevskii equations via local Radial Basis Functions-Differential Quadrature (RBF-DQ) technique on non-rectangular computational domains

被引:36
作者
Dehghan, Mehdi [1 ]
Abbaszadeh, Mostafa [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, 424 Hafez Ave, Tehran 15914, Iran
关键词
Local radial basis functions (RBFs) meshless method; Differential quadrature technique; Schrodinger/Gross-Pitaevskii equation; Klein-Gordon-Zalcharov equation; Fourth-order Runge-Kutta method; Optic and laser engineering; PROBABILITY DENSITY-FUNCTION; SOLITARY WAVE SOLUTION; JUMP-DIFFUSION MODELS; NUMERICAL-SOLUTION; FD METHOD; PSEUDOSPECTRAL METHOD; SHAPE PARAMETER; SYSTEM; APPROXIMATION; ELASTOPLASTICITY;
D O I
10.1016/j.enganabound.2017.10.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the current investigation, we develop an efficient truly meshless technique for solving two models in optic and laser engineering i.e. Klein-Gordon-Zakharov and Schrodinger/Gross-Pitaevskii equations in one- two- and three-dimensional cases. The employed meshless is the upwind local radial basis functions-differential quadrature (LRBF-DQ) technique. The spacial direction is discretized using the LRBF-DQ method and also to obtain high order numerical results, the fourth-order exponential time differencing Runge-Kutta method (ETDRK4) planned by Liang et al. [37] is applied to discrete the temporal direction. To show the efficiency of the proposed method, we solve the mentioned models on some complex shaped domains. Moreover, several examples are given and simulation results show the acceptable accuracy and efficiency of the proposed scheme. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:156 / 170
页数:15
相关论文
共 62 条
[1]  
[Anonymous], 2000, P 16 IM WORLD C SCI
[2]   Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J].
Antoine, Xavier ;
Bao, Weizhu ;
Besse, Christophe .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) :2621-2633
[3]   Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach [J].
Ballestra, Luca Vincenzo ;
Pacelli, Graziella .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2013, 37 (06) :1142-1167
[4]   A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications [J].
Ballestra, Luca Vincenzo ;
Pacelli, Graziella .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (11) :1546-1554
[5]   Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions [J].
Ballestra, Luca Vincenzo ;
Pacelli, Graziella .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2011, 35 (09) :1075-1084
[6]   A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime [J].
Bao, Weizhu ;
Zhao, Xiaofei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 327 :270-293
[7]   AN EXPONENTIAL WAVE INTEGRATOR SINE PSEUDOSPECTRAL METHOD FOR THE KLEIN-GORDON-ZAKHAROV SYSTEM [J].
Bao, Weizhu ;
Dong, Xuanchun ;
Zhao, Xiaofei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2903-A2927
[8]   Gaussian RBF-FD weights and its corresponding local truncation errors [J].
Bayona, Victor ;
Moscoso, Miguel ;
Kindelan, Manuel .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (09) :1361-1369
[9]   Optimal variable shape parameter for multiquadric based RBF-FD method [J].
Bayona, Victor ;
Moscoso, Miguel ;
Kindelan, Manuel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) :2466-2481
[10]   Optimal constant shape parameter for multiquadric based RBF-FD method [J].
Bayona, Victor ;
Moscoso, Miguel ;
Kindelan, Manuel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) :7384-7399