Some properties of angular integrals

被引:16
作者
Bergere, M. [1 ]
Eynard, B. [1 ]
机构
[1] CEA Saclay, Inst Theoret Phys, CEA, DSM IPhT,CNRS,URA 2306, F-91191 Gif Sur Yvette, France
关键词
CALOGERO-SUTHERLAND MODEL; ASYMPTOTIC-EXPANSION;
D O I
10.1088/1751-8113/42/26/265201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find new representations for Itzykson-Zuber like angular integrals for arbitrary beta, in particular for the orthogonal group O(n), the unitary group U(n) and the symplectic group Sp(2n). We rewrite the Haar measure integral, as a flat Lebesge measure integral, and we deduce some recursion formulae on n. The same methods give also Shatashvili's type moments. Finally, we prove that, in agreement with Brezin and Hikami's observation, the angular integrals are linear combinations of exponentials whose coefficients are polynomials in the reduced variables (x(i) - x(j))(y(i) - y(j)).
引用
收藏
页数:32
相关论文
共 38 条
[1]  
Abramowitz M., 1974, Handbook of Mathematical Functions-With Formulas, Graphs, and Mathematical Tables
[2]   AN ASYMPTOTIC-EXPANSION FOR THE DISTRIBUTION OF THE LATENT ROOTS OF THE ESTIMATED COVARIANCE-MATRIX [J].
ANDERSON, GA .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (04) :1153-1173
[3]   COLLECTIVE FIELD-THEORY, CALOGERO-SUTHERLAND MODEL AND GENERALIZED MATRIX MODELS [J].
AWATA, H ;
MATSUO, Y ;
ODAKE, S ;
SHIRAISHI, J .
PHYSICS LETTERS B, 1995, 347 (1-2) :49-55
[4]   The Calogero-Sutherland model and generalized classical polynomials [J].
Baker, TH ;
Forrester, PJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (01) :175-216
[5]   ASYMPTOTIC EXPANSION FOR DISTRIBUTION OF EIGENVALUES OF A 3 BY 3 WISHART MATRIX [J].
BINGHAM, C .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05) :1498-&
[6]  
BREZIN E, 2002, ARXIVMATHPH0208002
[7]   GROUND STATE OF A ONE-DIMENSIONAL N-BODY SYSTEM [J].
CALOGERO, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) :2197-&
[8]   A NOTE ON THE BESSEL POLYNOMIALS [J].
CARLITZ, L .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (02) :151-162
[9]  
Chekhov L, 2006, J HIGH ENERGY PHYS
[10]   LOOP EQUATIONS AND NONPERTURBATIVE EFFECTS IN 2-DIMENSIONAL QUANTUM-GRAVITY [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1990, 5 (13) :1019-1029