Discreteness corrections and higher spatial derivatives in effective canonical quantum gravity

被引:35
作者
Bojowald, Martin [1 ]
Paily, George M. [1 ]
Reyes, Juan D. [2 ]
机构
[1] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[2] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
基金
美国国家科学基金会;
关键词
FORMULATION; COSMOLOGY; GEOMETRY;
D O I
10.1103/PhysRevD.90.025025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Canonical quantum theories with discrete space may imply interesting effects. This paper presents a general effective description, paying due attention to the role of higher spatial derivatives in a local expansion and differences to higher time derivatives. In a concrete set of models, it is shown that spatial derivatives one order higher than the classical one are strongly restricted in spherically symmetric effective loop quantum gravity. Moreover, radial holonomy corrections alone cannot be anomaly free to this order.
引用
收藏
页数:26
相关论文
共 42 条
[1]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[2]   Quantum nature of the big bang: Improved dynamics [J].
Ashtekar, Abhay ;
Pawlowski, Tomasz ;
Singh, Parampreet .
PHYSICAL REVIEW D, 2006, 74 (08)
[3]   Improved and perfect actions in discrete gravity [J].
Bahr, Benjamin ;
Dittrich, Bianca .
PHYSICAL REVIEW D, 2009, 80 (12)
[4]   Spherically symmetric quantum geometry: states and basic operators [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :3733-3753
[5]   The semiclassical limit of loop quantum cosmology [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (18) :L109-L116
[6]   Loop quantum cosmology: IV. Discrete time evolution [J].
Bojowald, M .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (06) :1071-1087
[7]   Symmetry reduction for quantized diffeomorphism-invariant theories of connections [J].
Bojowald, M ;
Kastrup, HA .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (15) :3009-3043
[8]  
Bojowald M., 2013, QUANTUM MATTER, V2, P436
[9]  
Bojowald M., 2011, Quantum Cosmology A fundamental Description of the Universe
[10]   Lattice refining loop quantum cosmology, anisotropic models, and stability [J].
Bojowald, Martin ;
Cartin, Daniel ;
Khanna, Gaurav .
PHYSICAL REVIEW D, 2007, 76 (06)