Delocalization properties at isolated avoided crossings in Lipkin-Meshkov-Glick type Hamiltonian models

被引:9
作者
Romera, Elvira [1 ,2 ]
Castanos, Octavio [3 ]
Calixto, Manuel [4 ,5 ]
Perez-Bernal, Francisco [6 ]
机构
[1] Univ Granada, Dept Fis Atom Mol & Nucl, Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Carlos Fis Teor & Computac 1, Fuentenueva S-N, E-18071 Granada, Spain
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Apdo Postal 70-543, Mexico City 04510, DF, Mexico
[4] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Fuentenueva S-N, E-18071 Granada, Spain
[5] Univ Granada, Fac Ciencias, Inst Carlos Fis Teor & Computac 1, Fuentenueva S-N, E-18071 Granada, Spain
[6] Univ Huelva, Dept Ciencias Integradas, CSIC, Unidad Asociada,Grp Invest Fis Mol Atom & Nucl GI, Huelva 21071, Spain
关键词
mesoscopic systems; quantum phase transitions; QUANTUM PHASE-TRANSITIONS; COHERENT STATES; SYSTEMS; LOCALIZATION; ENTANGLEMENT; PROPAGATION; DYNAMICS; DENSITY;
D O I
10.1088/1742-5468/aa4e90
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We present a detailed study of the behavior of the delocalization properties in the phase space of the Husimi function of ground and excited states in the avoided crossings vicinity for a Hamiltonian of Lipkin-MeshkovGlick type. The analysis was done numerically with a calculation of the second moment of the Husimi function and the Wehrl entropy for the Hamiltonian eigenstates. Avoided crossings have been determined by calculating the real part of the exceptional points imposing a threshold value for the energy difference between adjacent levels. We have found that the behavior of these quantities indicates locatization-delocalization in phase space for adjacent energy levels in avoided crossings. The obtained results have been further explained by a perturbative calculation of the derivative of the second moment of the Husimi function with respect to the control parameter.
引用
收藏
页数:19
相关论文
共 67 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[3]   Proposal for a Laser Control of Vibrational Cooling in Na2 Using Resonance Coalescence [J].
Atabek, O. ;
Lefebvre, R. ;
Lepers, M. ;
Jaouadi, A. ;
Dulieu, O. ;
Kokoouline, V. .
PHYSICAL REVIEW LETTERS, 2011, 106 (17)
[4]  
Basu S, 2003, ALGOTITHMS REAL ALGE
[5]   Physics of nonhermitian degeneracies [J].
Berry, MV .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) :1039-1047
[6]   DIABOLICAL POINTS IN THE SPECTRA OF TRIANGLES [J].
BERRY, MV ;
WILKINSON, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1984, 392 (1802) :15-43
[7]   Diffraction by volume gratings with imaginary potentials [J].
Berry, MV ;
O'Dell, DHJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (08) :2093-2101
[8]   Quantum signatures of the self-trapping transition in attractive lattice bosons [J].
Buonsante, P. ;
Penna, V. ;
Vezzani, A. .
PHYSICAL REVIEW A, 2010, 82 (04)
[9]   Husimi distribution and phase-space analysis of a vibron-model quantum phase transition [J].
Calixto, M. ;
del Real, R. ;
Romera, E. .
PHYSICAL REVIEW A, 2012, 86 (03)
[10]  
Campos C, 2010, ANN PHYS, V325, P325