Using mathematical modeling to control topographical properties of poly (ε-caprolactone) melt electrospun scaffolds

被引:9
|
作者
Ko, J. [1 ]
Bhullar, S. K. [1 ]
Mohtaram, N. K. [1 ]
Willerth, S. M. [1 ,2 ,3 ]
Jun, M. B. G. [1 ]
机构
[1] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 3P6, Canada
[2] Univ Victoria, Div Med Sci, Victoria, BC V8W 3P6, Canada
[3] Univ Victoria, Dept Biomed Engn, Victoria, BC V8W 3P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
melt electrospinning; modeling; topography; microfibers; and scaffolds; ELECTRICALLY FORCED JETS; IN-VITRO; FABRICATION; NANOFIBERS; FIBERS;
D O I
10.1088/0960-1317/24/6/065009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Melt electrospinning creates fibrous scaffolds using direct deposition. The main challenge of melt electrospinning is controlling the topography of the scaffolds for tissue engineering applications. Mathematical modeling enables a better understanding of the parameters that determine the topography of scaffolds. The objective of this study is to build two types of mathematical models. First, we modeled the melt electrospinning process by incorporating parameters such as nozzle size, counter electrode distance and applied voltage that influence fiber diameter and scaffold porosity. Our second model describes the accumulation of the extruded microfibers on flat and round surfaces using data from the microfiber modeling. These models were validated through the use of experimentally obtained data. Scanning electron microscopy (SEM) was used to image the scaffolds and the fiber diameters were measured using Quartz-PCI Image Management Systems (R) in SEM to measure scaffold porosity.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mathematical model for predicting topographical properties of poly (ε-caprolactone) melt electrospun scaffolds including the effects of temperature and linear transitional speed
    Ko, Junghyuk
    Mohtaram, Nima Khadem
    Lee, Patrick C.
    Willerth, Stephanie M.
    Jun, Martin B. G.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (04)
  • [2] Fibrous star poly(ε-caprolactone) melt-electrospun scaffolds for wound healing applications
    Gazzarri, Matteo
    Bartoli, Cristina
    Mota, Carlos
    Puppi, Dario
    Dinucci, Dinuccio
    Volpi, Silvia
    Chiellini, Federica
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 2013, 28 (05) : 492 - 507
  • [3] Scaffolds with Tunable Properties Constituted by Electrospun Nanofibers of Polyglycolide and Poly(ε-caprolactone)
    Keridou, Ina
    Franco, Lourdes
    Turon, Pau
    del Valle, Luis J.
    Puiggali, Jordi
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2018, 303 (07)
  • [4] The Effect of Ozone Treatment on the Physicochemical Properties and Biocompatibility of Electrospun Poly(ε)caprolactone Scaffolds
    Dabasinskaite, Lauryna
    Krugly, Edvinas
    Baniukaitiene, Odeta
    Martuzevicius, Dainius
    Ciuzas, Darius
    Jankauskaite, Lina
    Aukstikalne, Lauryna
    Usas, Arvydas
    PHARMACEUTICS, 2021, 13 (08)
  • [5] The use of thermal treatments to enhance the mechanical properties of electrospun poly (ε-caprolactone) scaffolds
    Lee, Sang Jin
    Oh, Se Heang
    Liu, Jie
    Soker, Shay
    Atala, Anthony
    Yoo, James J.
    BIOMATERIALS, 2008, 29 (10) : 1422 - 1430
  • [6] Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds
    Abarzua-Illanes, Phammela N.
    Padilla, Cristina
    Ramos, Andrea
    Isaacs, Mauricio
    Ramos-Grez, Jorge
    Olguin, Hugo C.
    Valenzuela, Loreto M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (08) : 2241 - 2251
  • [7] Optical scattering in electrospun poly(ε-caprolactone) tissue scaffolds
    Park, ChangKyoo
    Choi, Hae Woon
    Lee, Carol H.
    Lannutti, John J.
    Farson, Dave F.
    JOURNAL OF LASER APPLICATIONS, 2014, 26 (03)
  • [8] Mechanical Properties and Biocompatibility of Electrospun Poly(ε-caprolactone)/Gelatin Scaffolds Loaded with Cellulose Fiber
    Jeong, Yujeong
    Lee, Deuk-Yong
    POLYMER-KOREA, 2022, 46 (06) : 837 - 842
  • [9] Antimicrobial electrospun poly(ε-caprolactone) scaffolds for gingival fibroblast growth
    Baranowska-Korczyc, Anna
    Warowicka, Alicja
    Jasiurkowska-Delaporte, Malgorzata
    Grzeskowiak, Bartosz
    Jarek, Marcin
    Maciejewska, Barbara M.
    Jurga-Stopa, Justyna
    Jurga, Stefan
    RSC ADVANCES, 2016, 6 (24): : 19647 - 19656
  • [10] Electrospun poly(caprolactone)-elastin scaffolds for peripheral nerve regeneration
    Swindle-Reilly K.E.
    Paranjape C.S.
    Miller C.A.
    Progress in Biomaterials, 2014, 3 (1)