Using mathematical modeling to control topographical properties of poly (ε-caprolactone) melt electrospun scaffolds

被引:9
作者
Ko, J. [1 ]
Bhullar, S. K. [1 ]
Mohtaram, N. K. [1 ]
Willerth, S. M. [1 ,2 ,3 ]
Jun, M. B. G. [1 ]
机构
[1] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 3P6, Canada
[2] Univ Victoria, Div Med Sci, Victoria, BC V8W 3P6, Canada
[3] Univ Victoria, Dept Biomed Engn, Victoria, BC V8W 3P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
melt electrospinning; modeling; topography; microfibers; and scaffolds; ELECTRICALLY FORCED JETS; IN-VITRO; FABRICATION; NANOFIBERS; FIBERS;
D O I
10.1088/0960-1317/24/6/065009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Melt electrospinning creates fibrous scaffolds using direct deposition. The main challenge of melt electrospinning is controlling the topography of the scaffolds for tissue engineering applications. Mathematical modeling enables a better understanding of the parameters that determine the topography of scaffolds. The objective of this study is to build two types of mathematical models. First, we modeled the melt electrospinning process by incorporating parameters such as nozzle size, counter electrode distance and applied voltage that influence fiber diameter and scaffold porosity. Our second model describes the accumulation of the extruded microfibers on flat and round surfaces using data from the microfiber modeling. These models were validated through the use of experimentally obtained data. Scanning electron microscopy (SEM) was used to image the scaffolds and the fiber diameters were measured using Quartz-PCI Image Management Systems (R) in SEM to measure scaffold porosity.
引用
收藏
页数:13
相关论文
共 30 条
[1]   Use of electrospinning technique for biomedical applications [J].
Agarwal, Seema ;
Wendorff, Joachim H. ;
Greiner, Andreas .
POLYMER, 2008, 49 (26) :5603-5621
[2]   Processing and microstructural characterization of porous biocompatible protein polymer thin films [J].
Buchko, CJ ;
Chen, LC ;
Shen, Y ;
Martin, DC .
POLYMER, 1999, 40 (26) :7397-7407
[3]   Electrospinning of polymer melts:: Phenomenological observations [J].
Dalton, Paul D. ;
Grafahrend, Dirk ;
Klinkhammer, Kristina ;
Klee, Doris ;
Moeller, Martin .
POLYMER, 2007, 48 (23) :6823-6833
[4]   Patterned melt electrospun substrates for tissue engineering [J].
Dalton, Paul D. ;
Joergensen, Nanna T. ;
Groll, Juergen ;
Moeller, Martin .
BIOMEDICAL MATERIALS, 2008, 3 (03)
[5]   Direct in vitro electrospinning with polymer melts [J].
Dalton, PD ;
Klinkhammer, K ;
Salber, J ;
Klee, D ;
Möller, M .
BIOMACROMOLECULES, 2006, 7 (03) :686-690
[6]   Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: A review [J].
Dash, Tapan K. ;
Konkimalla, V. Badireenath .
JOURNAL OF CONTROLLED RELEASE, 2012, 158 (01) :15-33
[7]   Stretching of a straight electrically charged viscoelastic jet [J].
Feng, JJ .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2003, 116 (01) :55-70
[8]   The stretching of an electrified non-Newtonian jet: A model for electrospinning [J].
Feng, JJ .
PHYSICS OF FLUIDS, 2002, 14 (11) :3912-3926
[9]   Mathematical models for continuous electrospun nanofibers and electrospun nanoporous microspheres [J].
He, Ji-Huan ;
Xu, Lan ;
Wu, Yue ;
Liu, Yong .
POLYMER INTERNATIONAL, 2007, 56 (11) :1323-1329
[10]   Electrospinning and electrically forced jets. I. Stability theory [J].
Hohman, MM ;
Shin, M ;
Rutledge, G ;
Brenner, MP .
PHYSICS OF FLUIDS, 2001, 13 (08) :2201-2220