Transfer learning based on improved stacked autoencoder for bearing fault diagnosis

被引:76
作者
Luo, Shuyang [1 ]
Huang, Xufeng [1 ]
Wang, Yanzhi [1 ]
Luo, Rongmin [1 ]
Zhou, Qi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Aerosp Engn, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Transfer learning; Fault diagnosis; Stacked autoencoder; Convolutional shortcuts; Domain fusion; ALGORITHM; DRIVEN;
D O I
10.1016/j.knosys.2022.109846
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep transfer learning algorithm is regarded as a promising method to address the issue of rolling bearing fault diagnosis with limited labeled data. Stacked autoencoder (SAE) has been widely employed in deep transfer learning research since it is a semi-supervised algorithm. However, there are still some limitations for the transfer learning based on SAE, including the vanishing gradient problem caused by the sigmoid activation function in SAE, and low accuracy under the condition of cross-domain or limited labeled training data. In this work, an improved SAE based on convolutional shortcuts and domain fusion strategy (ISAE-CSDF) is proposed for fault diagnosis of rolling bearing. The sparse term Kullback-Leibler (KL) divergence in the original SAE is replaced with the convolutional shortcuts to prevent vanishing gradient problem and improve the feature extraction ability. The domain fusion strategy can transfer commonly shared feature information from various domains. The feasibility of ISAE-CSDF is validated on two publicly available bearing datasets and a custom-built experiment device. Results show that ISAE-CSDF outperforms the state-of-art methods in the context of different working conditions, cross-domain, and limited labeled data. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Robust visual tracking for UAVs with dynamic feature weight selection [J].
An, Zhiyong ;
Wang, Xiumin ;
Li, Bo ;
Xiang, Zhongliang ;
Zhang, Bin .
APPLIED INTELLIGENCE, 2023, 53 (04) :3836-3849
[2]   A review on data-driven fault severity assessment in rolling bearings [J].
Cerrada, Mariela ;
Sanchez, Rene-Vinicio ;
Li, Chuan ;
Pacheco, Fannia ;
Cabrera, Diego ;
de Oliveira, Jose Valente ;
Vasquez, Rafael E. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 99 :169-196
[3]   A Hyperspectral Image Classification Method Using Multifeature Vectors and Optimized KELM [J].
Chen, Huayue ;
Miao, Fang ;
Chen, Yijia ;
Xiong, Yijun ;
Chen, Tao .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 :2781-2795
[4]  
Chen JB, 2021, IEEE T INSTRUM MEAS, V70, DOI [10.1109/TIM.2021.3077673, 10.1109/tim.2020.3020682]
[5]   Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery [J].
Chen, Zhuyun ;
He, Guolin ;
Li, Jipu ;
Liao, Yixiao ;
Gryllias, Konstantinos ;
Li, Weihua .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) :8702-8712
[6]   Fault Diagnosis of Rolling Bearings Based on an Improved Stack Autoencoder and Support Vector Machine [J].
Cui, Mingliang ;
Wang, Youqing ;
Lin, Xinshuang ;
Zhong, Maiying .
IEEE SENSORS JOURNAL, 2021, 21 (04) :4927-4937
[7]   An Enhanced MSIQDE Algorithm With Novel Multiple Strategies for Global Optimization Problems [J].
Deng, Wu ;
Xu, Junjie ;
Gao, Xiao-Zhi ;
Zhao, Huimin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (03) :1578-1587
[8]   A Novel Gate Resource Allocation Method Using Improved PSO-Based QEA [J].
Deng, Wu ;
Xu, Junjie ;
Zhao, Huimin ;
Song, Yingjie .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) :1737-1745
[9]   Multisensor bearing fault diagnosis based on one-dimensional convolutional long short-term memory networks [J].
Hao, Shijie ;
Ge, Feng-Xiang ;
Li, Yanmiao ;
Jiang, Jiayu .
MEASUREMENT, 2020, 159
[10]   Modified Deep Autoencoder Driven by Multisource Parameters for Fault Transfer Prognosis of Aeroengine [J].
He, Zhiyi ;
Shao, Haidong ;
Ding, Ziyang ;
Jiang, Hongkai ;
Cheng, Junsheng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (01) :845-855