Lower bounds for the energy of graphs

被引:23
作者
Jahanbani, Akbar [1 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
关键词
Energy (of non-singular graph); Determinant of adjacency matrix; Randic index; Spectral radius; PI-ELECTRON ENERGIES; LATENT ROOTS; MATRIX;
D O I
10.1016/j.akcej.2017.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite simple undirected graph with n vertices and m edges. The energy of a graph G, denoted by epsilon(G), is defined as the sum of the absolute values of the eigenvalues of G. In this paper we present lower bounds for epsilon(G) in terms of number of vertices, edges, Randie index, minimum degree, diameter, walk and determinant of the adjacency matrix. Also we show our lower bound in (11) under certain conditions is better than the classical bounds given in Caporossi et al. (1999), Das (2013) and McClelland (1971). (C) 2017 Kalasalingam University. Publishing Services by Elsevier B.V.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 18 条
[1]  
[Anonymous], 2012, Graph Energy
[2]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[3]   Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy [J].
Caporossi, G ;
Cvetkovic, D ;
Gutman, I ;
Hansen, P .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (06) :984-996
[4]  
Cvetkovi DM., 1980, Spectra of Graphs: Theory and Applications
[5]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P663
[6]  
Das KC, 2013, MATCH-COMMUN MATH CO, V70, P657
[7]   SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.) [J].
FAVARON, O ;
MAHEO, M ;
SACLE, JF .
DISCRETE MATHEMATICS, 1993, 111 (1-3) :197-220
[8]   COMMENT ON PAPER - PROPERTIES OF LATENT ROOTS OF A MATRIX - ESTIMATION OF PI-ELECTRON ENERGIES BY MCCLELLAND,BJ [J].
GUTMAN, I ;
MILUN, M ;
TRINAJSTIC, N .
JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (05) :2772-2774
[9]   Topology and stability of conjugated hidrocarbons.: The dependence of total π-electron energy on molecular topology [J].
Gutman, I .
JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2005, 70 (03) :441-456
[10]  
Gutman I, 2001, ALGEBRAIC COMBINATORICS AND APPLICATIONS, P196