Facile construction of 3D porous carbon nanotubes/polypyrrole and reduced graphene oxide on carbon nanotube fiber for high-performance asymmetric supercapacitors

被引:64
作者
Liu, Jia-hua [1 ]
Xu, Xiao-ying [1 ]
Yu, Jiali [2 ]
Hong, Jiao-ling [1 ]
Liu, Chen [1 ]
Ouyang, Xing [1 ]
Lei, Shuai [1 ]
Meng, Xiao [1 ]
Tang, Jiao-Ning [1 ]
Chen, Da-Zhu [1 ]
机构
[1] Shenzhen Univ, Shenzhen Key Lab Polymer Sci & Technol, Coll Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nanotube; Graphene; Polypyrrole; Fiber supercapacitor; Asymmetric; ALL-SOLID-STATE; FLEXIBLE SUPERCAPACITOR; ELECTRODES; WIRE; YARN; COMPOSITES; HYDROGEL; CAPACITANCE; DEPOSITION; SPONGES;
D O I
10.1016/j.electacta.2019.05.059
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Flexible fiber-based supercapacitors applied in portable energy storage devices and wearable electronics have recently aroused widespread research interests. However, challenges still exist in the pursuit of facile fabrication technique for simultaneously realizing high capacitive performance and excellent mechanical stability. Here, two novel types of core-sheathed hybrid electrodes with carbon nanotube fiber (CNF) as the core and three-dimensional (3D) porous carbon nanotubes/polypyrrole (CNTs/PPy) or reduced graphene oxide (rGO) as the sheath were hierarchically constructed through one-pot electrochemical deposition. An all-solid-state asymmetric fiber-shaped supercapacitor was assembled by wrapping the gel electrolyte coated negative CNF/rGO electrode along the positive CNF/CNTs/PPy electrode. Thanks to the combination of abundant 3D pore structure and synergistic effect of different components in the fiber electrodes, the resulted supercapacitors exhibited a broadened potential window of 1.6 V, a high areal specific capacitance of 58.82 mF cm(-2) and a high areal energy density of 20.91 mu W h cm(-2). It should be noted that 98.6% of the initial capacitance of the supercapacitor device can still be maintained after experiencing 200 reciprocating bending cycles, demonstrating outstanding mechanical stability. Moreover, the supercapacitor exhibited excellent cyclic performance, which was testified by 90% capacity retention after 10000 times of galvanostatic charge-discharge process. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 19
页数:11
相关论文
共 64 条
  • [1] Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage
    Bae, Joonho
    Song, Min Kyu
    Park, Young Jun
    Kim, Jong Min
    Liu, Meilin
    Wang, Zhong Lin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) : 1683 - 1687
  • [2] Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance
    Beidaghi, Majid
    Wang, Chunlei
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) : 4501 - 4510
  • [3] Characterization and long-term performance of polyaniline-based electrochemical capacitors
    Bélanger, D
    Ren, XM
    Davey, J
    Uribe, F
    Gottesfeld, S
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (08) : 2923 - 2929
  • [4] MnO2-modified hierarchical graphene fiber electrochemical supercapacitor
    Chen, Qing
    Meng, Yuning
    Hu, Chuangang
    Zhao, Yang
    Shao, Huibo
    Chen, Nan
    Qu, Liangti
    [J]. JOURNAL OF POWER SOURCES, 2014, 247 : 32 - 39
  • [5] Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes
    Chen, Tao
    Dai, Liming
    [J]. ENERGY STORAGE MATERIALS, 2016, 2 : 21 - 26
  • [6] Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors
    Chu, Xiang
    Huang, Haichao
    Zhang, Haitao
    Zhang, Hepeng
    Gu, Bingni
    Su, Hai
    Liu, Fangyan
    Han, Yu
    Wang, Zixing
    Chen, Ningjun
    Yan, Cheng
    Deng, Wen
    Deng, Weili
    Yang, Weiqing
    [J]. ELECTROCHIMICA ACTA, 2019, 301 : 136 - 144
  • [7] Stacking up layers of polyaniline/carbon nanotube networks inside papers as highly flexible electrodes with large areal capacitance and superior rate capability
    Dong, Liubing
    Liang, Gemeng
    Xu, Chengjun
    Ren, Danyang
    Wang, Jinjie
    Pan, Zheng-Ze
    Li, Baohua
    Kang, Feiyu
    Yang, Quan-Hong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) : 19934 - 19942
  • [8] Flexible and Wire-Shaped Micro-Supercapacitor Based on Ni(OH)2-Nanowire and Ordered Mesoporous Carbon Electrodes
    Dong, Xiaoli
    Guo, Ziyang
    Song, Yanfang
    Hou, Mengyan
    Wang, Jianqiang
    Wang, Yonggang
    Xia, Yongyao
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (22) : 3405 - 3412
  • [9] Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage
    Fu, Yongping
    Cai, Xin
    Wu, Hongwei
    Lv, Zhibin
    Hou, Shaocong
    Peng, Ming
    Yu, Xiao
    Zou, Dechun
    [J]. ADVANCED MATERIALS, 2012, 24 (42) : 5713 - 5718
  • [10] Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density
    Gao, Libo
    Song, Jian
    Surjadi, James Utama
    Cao, Ke
    Han, Ying
    Sun, Dong
    Tao, Xiaoming
    Lu, Yang
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (34) : 28597 - 28607