Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission

被引:161
作者
Lowengrub, John S. [1 ]
Raetz, Andreas [2 ]
Voigt, Axel [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Tech Univ Dresden, Inst Wissensch Rechnen, D-01062 Dresden, Germany
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 03期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
bending; biomechanics; biomembranes; finite element analysis; nonlinear equations; spinodal decomposition; ELASTIC BENDING ENERGY; 2-COMPONENT MEMBRANES; SHAPE TRANSFORMATIONS; GIANT VESICLES; TERNARY MIXTURES; FLUID MEMBRANES; SEPARATION; CURVATURE; DEFORMATION; SEGREGATION;
D O I
10.1103/PhysRevE.79.031926
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a thermodynamically consistent phase-field model to simulate the dynamics of multicomponent vesicles. The model accounts for bending stiffness, spontaneous curvature, excess (surface) energy, and a line tension between the coexisting surface phases. Our approach is similar to that recently used by Wang and Du [J. Math. Biol. 56, 347 (2008)] with a key difference. Here, we concentrate on the dynamic evolution and solve the surface mass conservation equation explicitly; this equation was not considered by Wang and Du. The resulting fourth-order strongly coupled system of nonlinear nonlocal equations are solved numerically using an adaptive finite element numerical method. Although the system is valid for three dimensions, we limit our studies here to two dimensions where the vesicle is a curve. Differences between the spontaneous curvatures and the bending rigidities of the surface phases are found numerically to lead to the formation of buds, asymmetric vesicle shapes and vesicle fission even in two dimensions. In addition, simulations of configurations far from equilibrium indicate that phase separation via spinodal decomposition and coarsening not only affect the vesicle shape but also that the vesicle shape affects the phase separation dynamics, especially the coarsening and may lead to lower energy states than might be achieved by evolving initially phase-separated configurations.
引用
收藏
页数:13
相关论文
共 99 条
[1]   Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors -: art. no. P10003 [J].
Affleck, I ;
Hofstetter, W ;
Nelson, DR ;
Shollwöck, U .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   Budding and fission of a multiphase vesicle [J].
Allain, J. -M. ;
Ben Amar, M. .
EUROPEAN PHYSICAL JOURNAL E, 2006, 20 (04) :409-420
[3]   Biphasic vesicle: instability induced by adsorption of proteins [J].
Allain, JM ;
Ben Amar, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 337 (3-4) :531-545
[4]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[5]   EQUILIBRIUM SHAPE OF 2-COMPONENT UNILAMELLAR MEMBRANES AND VESICLES [J].
ANDELMAN, D ;
KAWAKATSU, T ;
KAWASAKI, K .
EUROPHYSICS LETTERS, 1992, 19 (01) :57-62
[6]   Coupling field theory with continuum mechanics: A simulation of domain formation in giant unilamellar vesicles [J].
Ayton, GS ;
McWhirter, JL ;
McMurtry, P ;
Voth, GA .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3855-3869
[7]   Raft composition at physiological temperature and pH in the absence of detergents [J].
Ayuyan, Artern G. ;
Cohen, Fredric S. .
BIOPHYSICAL JOURNAL, 2008, 94 (07) :2654-2666
[8]   PARAMETRIC APPROXIMATION OF WILLMORE FLOW AND RELATED GEOMETRIC EVOLUTION EQUATIONS [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :225-253
[9]   Membrane elasticity in giant vesicles with fluid phase coexistence [J].
Baumgart, T ;
Das, S ;
Webb, WW ;
Jenkins, JT .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :1067-1080
[10]   Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension [J].
Baumgart, T ;
Hess, ST ;
Webb, WW .
NATURE, 2003, 425 (6960) :821-824