Methods to Recover Unknown Processes in Partial Differential Equations Using Data

被引:2
作者
Chen, Zhen [1 ]
Wu, Kailiang [1 ]
Xiu, Dongbin [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
System identification; Data-driven discovery; Galerkin method; Collocation method; Advection-diffusion equation; GOVERNING EQUATIONS; SPARSE IDENTIFICATION; PARAMETER-ESTIMATION; DIFFUSION EQUATION; MODELS;
D O I
10.1007/s10915-020-01324-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of identifying unknown processes embedded in time-dependent partial differential equation (PDE) using observational data, with an application to advection-diffusion type PDE. We first conduct theoretical analysis and derive conditions to ensure the solvability of the problem. We then present a set of numerical approaches, including Galerkin type algorithm and collocation type algorithm. Analysis of the algorithms are presented, along with their implementation detail. The Galerkin algorithm is more suitable for practical situations, particularly those with noisy data, as it avoids using derivative/gradient data. Various numerical examples are then presented to demonstrate the performance and properties of the numerical methods.
引用
收藏
页数:23
相关论文
共 39 条
  • [21] Data-driven identification of interpretable reduced-order models using sparse regression
    Narasingam, Abhinav
    Sang-Il Kwon, Joseph
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2018, 119 : 101 - 111
  • [22] Identification of diffusion parameters in a nonlinear convection-diffusion equation using the augmented Lagrangian method
    Nilssen, T. K.
    Karlsen, K. H.
    Mannseth, T.
    Tai, X. -C.
    [J]. COMPUTATIONAL GEOSCIENCES, 2009, 13 (03) : 317 - 329
  • [23] Data driven governing equations approximation using deep neural networks
    Qin, Tong
    Wu, Kailiang
    Xiu, Dongbin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 : 620 - 635
  • [24] Sparse identification of nonlinear dynamics for rapid model recovery
    Quade, Markus
    Abel, Markus
    Kutz, J. Nathan
    Brunton, Steven L.
    [J]. CHAOS, 2018, 28 (06)
  • [25] Raissi M., 2017, ARXIV171110566
  • [26] Raissi M., 2017, Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations
  • [27] Hidden physics models: Machine learning of nonlinear partial differential equations
    Raissi, Maziar
    Karniadakis, George Em
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 357 : 125 - 141
  • [28] Machine learning of linear differential equations using Gaussian processes
    Raissi, Maziar
    Perdikaris, Paris
    Karniadakis, George Em
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 348 : 683 - 693
  • [29] Data-driven discovery of partial differential equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. SCIENCE ADVANCES, 2017, 3 (04):
  • [30] Sparse model selection via integral terms
    Schaeffer, Hayden
    McCalla, Scott G.
    [J]. PHYSICAL REVIEW E, 2017, 96 (02)