Methods to Recover Unknown Processes in Partial Differential Equations Using Data

被引:2
作者
Chen, Zhen [1 ]
Wu, Kailiang [1 ]
Xiu, Dongbin [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
System identification; Data-driven discovery; Galerkin method; Collocation method; Advection-diffusion equation; GOVERNING EQUATIONS; SPARSE IDENTIFICATION; PARAMETER-ESTIMATION; DIFFUSION EQUATION; MODELS;
D O I
10.1007/s10915-020-01324-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of identifying unknown processes embedded in time-dependent partial differential equation (PDE) using observational data, with an application to advection-diffusion type PDE. We first conduct theoretical analysis and derive conditions to ensure the solvability of the problem. We then present a set of numerical approaches, including Galerkin type algorithm and collocation type algorithm. Analysis of the algorithms are presented, along with their implementation detail. The Galerkin algorithm is more suitable for practical situations, particularly those with noisy data, as it avoids using derivative/gradient data. Various numerical examples are then presented to demonstrate the performance and properties of the numerical methods.
引用
收藏
页数:23
相关论文
共 39 条
  • [11] Data-driven techniques to estimate parameters in the homogenized energy model for shape memory alloys
    Crews, John H.
    Smith, Ralph C.
    Pender, Kyle M.
    Hannen, Jennifer C.
    Buckner, Gregory D.
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2012, 23 (17) : 1897 - 1920
  • [12] Sparse identification of a predator-prey system from simulation data of a convection model
    Dam, Magnus
    Brons, Morten
    Rasmussen, Jens Juul
    Naulin, Volker
    Hesthaven, Jan S.
    [J]. PHYSICS OF PLASMAS, 2017, 24 (02)
  • [13] Solving high-dimensional partial differential equations using deep learning
    Han, Jiequn
    Jentzen, Arnulf
    Weinan, E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (34) : 8505 - 8510
  • [14] INCREMENTAL IDENTIFICATION OF TRANSPORT COEFFICIENTS IN CONVECTION-DIFFUSION SYSTEMS
    Karalashvili, Maka
    Gross, Sven
    Mhamdi, Adel
    Reusken, Arnold
    Marquardt, Wolfgang
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06) : 3249 - 3269
  • [15] IDENTIFICATION OF TRANSPORT COEFFICIENT MODELS IN CONVECTION-DIFFUSION EQUATIONS
    Karalashvili, Maka
    Gross, Sven
    Marquardt, Wolfgang
    Mhamdi, Adel
    Reusken, Arnold
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (01) : 303 - 327
  • [16] Khoo Y, 2018, ARXIV170703351
  • [17] Long Z., 2017, ARXIV171009668
  • [18] Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation
    Malengier, B.
    Van Keer, Roger
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (02) : 477 - 483
  • [19] Model selection for dynamical systems via sparse regression and information criteria
    Mangan, N. M.
    Kutz, J. N.
    Brunton, S. L.
    Proctor, J. L.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2204):
  • [20] VAMPnets for deep learning of molecular kinetics
    Mardt, Andreas
    Pasquali, Luca
    Wu, Hao
    Noe, Frank
    [J]. NATURE COMMUNICATIONS, 2018, 9