On a solution of a generalized semi-coercive contact problem in thermo-elasticity

被引:15
作者
Hlavácek, I [1 ]
Nedoma, J [1 ]
机构
[1] Acad Sci Czech Republ, Inst Comp Sci, Prague 8, Czech Republic
关键词
semi-coercive contact problem; variational inequality; thermo-elasticity; finite element method;
D O I
10.1016/S0378-4754(01)00433-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the paper, the quasi-coupled semi-coercive contact problem in thermo-elasticity is investigated. The FEM analysis of the problem is also presented. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 19 条
[1]  
[Anonymous], 1977, APL MAT
[2]   TRIANGULAR ELEMENTS IN FINITE ELEMENT METHOD [J].
BRAMBLE, JH ;
ZLAMAL, M .
MATHEMATICS OF COMPUTATION, 1970, 24 (112) :809-+
[3]  
BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345
[4]  
Haslinger J., 1981, Aplikace Matematiky, V26, P321
[5]  
Haslinger J., 1980, Appl. Math., V25, P324, DOI [/10.21136/am.1980.103868, DOI 10.21136/AM.1980.103868]
[6]  
Haslinger J., 1996, HDBK NUM AN, V4, P313, DOI DOI 10.1016/S1570-8659(96)80005-6
[7]   ON INEQUALITIES OF KORNS TYPE .1. BOUNDARY-VALUE PROBLEMS FOR ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS [J].
HLAVACEK, I ;
NECAS, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1970, 36 (04) :305-&
[8]  
HLAVACEK I, 1980, APL MAT, V25, P274
[9]  
Hlavacek I., 1988, Solution of Variational Inequalities in Mechanics
[10]  
JARUSEK J, 1984, CZECH MATH J, V34, P619