Recent computational drug repositioning strategies against SARS-CoV-2

被引:5
作者
Lu, Lu [1 ,2 ]
Qin, Jiale [1 ,3 ]
Chen, Jiandong [1 ,4 ]
Yu, Na [1 ]
Miyano, Satoru [5 ]
Deng, Zhenzhong [1 ,6 ]
Li, Chen [1 ,2 ,7 ]
机构
[1] Zhejiang Univ, Womens Hosp, Dept Human Genet, Dept Ultrasound,Sch Med, Hangzhou, Peoples R China
[2] Zhejiang Univ, Sch Med, Zhejiang Prov Key Lab Genet & Dev Disorders, Hangzhou, Peoples R China
[3] Zhejiang Prov Key Lab Precis Diag & Therapy Major, Hangzhou, Peoples R China
[4] Zhejiang Univ, Undergraduate Sch, Sch Publ Hlth, Hangzhou, Peoples R China
[5] Tokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, Japan
[6] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Shanghai, Peoples R China
[7] Alibaba Zhejiang Univ Joint Res Ctr Future Digital, Hangzhou, Peoples R China
来源
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL | 2022年 / 20卷
关键词
COVID-19; Drug repositioning; Drug combination; Neural network; Signature matching; Molecular docking; INTELLIGENCE TECHNOLOGY; CONNECTIVITY MAP; PROTEIN; PREDICTION; SIGNATURES; ENRICHR; SYSTEM;
D O I
10.1016/j.csbj.2022.10.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Since COVID-19 emerged in 2019, significant levels of suffering and disruption have been caused on a glo-bal scale. Although vaccines have become widely used, the virus has shown its potential for evading immunities or acquiring other novel characteristics. Whether current drug treatments are still effective for people infected with Omicron remains unclear. Due to the long development cycles and high expense requirements of de novo drug development, many researchers have turned to consider drug repositioning in the search to find effective treatments for COVID-19. Here, we review such drug repositioning and combination efforts towards providing better handling. For potential drugs under consideration, aspects of both structure and function require attention, with specific categories of sequence, expression, struc-ture, and interaction, the key parameters for investigation. For different data types, we show the corre-sponding differing drug repositioning methods that have been exploited. As incorporating drug combinations can increase therapeutic efficacy and reduce toxicity, we also review computational strate-gies to reveal drug combination potential. Taken together, we found that graph theory and neural net-work were the most used strategy with high potential towards drug repositioning for COVID-19. Integrating different levels of data may further improve the success rate of drug repositioning. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-commons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:5713 / 5728
页数:16
相关论文
共 96 条
  • [11] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [12] Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model
    Beck, Bo Ram
    Shin, Bonggun
    Choi, Yoonjung
    Park, Sungsoo
    Kang, Keunsoo
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 784 - 790
  • [13] Drug repositioning for COVID-19
    Benavides-Cordoba, Vicente
    [J]. COLOMBIA MEDICA, 2020, 51 (02):
  • [14] Benson DA, 2017, NUCLEIC ACIDS RES, V45, pD37, DOI [10.1093/nar/gkl986, 10.1093/nar/gkp1024, 10.1093/nar/gkr1202, 10.1093/nar/gkw1070, 10.1093/nar/gks1195, 10.1093/nar/gkn723, 10.1093/nar/gkx1094, 10.1093/nar/gkg057, 10.1093/nar/gkq1079]
  • [15] Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion
    Benton, Donald J.
    Wrobel, Antoni G.
    Xu, Pengqi
    Roustan, Chloe
    Martin, Stephen R.
    Rosenthal, Peter B.
    Skehel, John J.
    Gamblin, Steven J.
    [J]. NATURE, 2020, 588 (7837) : 327 - 330
  • [16] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [17] The Global Phosphorylation Landscape of SARS-CoV-2 Infection
    Bouhaddou, Mehdi
    Memon, Danish
    Meyer, Bjoern
    White, Kris M.
    Rezelj, Veronica V.
    Marrero, Miguel Correa
    Polacco, Benjamin J.
    Melnyk, James E.
    Ulferts, Svenja
    Kaake, Robyn M.
    Batra, Jyoti
    Richards, Alicia L.
    Stevenson, Erica
    Gordon, David E.
    Rojc, Ajda
    Obernier, Kirsten
    Fabius, Jacqueline M.
    Soucheray, Margaret
    Miorin, Lisa
    Moreno, Elena
    Koh, Cassandra
    Quang Dinh Tran
    Hardy, Alexandra
    Robinot, Remy
    Vallet, Thomas
    Nilsson-Payant, Benjamin E.
    Hernandez-Armenta, Claudia
    Dunham, Alistair
    Weigang, Sebastian
    Knerr, Julian
    Modak, Maya
    Quintero, Diego
    Zhou, Yuan
    Dugourd, Aurelien
    Valdeolivas, Alberto
    Patil, Trupti
    Li, Qiongyu
    Huttenhain, Ruth
    Cakir, Merve
    Muralidharan, Monita
    Kim, Minkyu
    Jang, Gwendolyn
    Tutuncuoglu, Beril
    Hiatt, Joseph
    Guo, Jeffrey Z.
    Xu, Jiewei
    Bouhaddou, Sophia
    Mathy, Christopher J. P.
    Gaulton, Anna
    Manners, Emma J.
    [J]. CELL, 2020, 182 (03) : 685 - +
  • [18] Callaway E, REMEMBER BETA NEW DA
  • [19] Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
    Cao, Yunlong
    Wang, Jing
    Jian, Fanchong
    Xiao, Tianhe
    Song, Weiliang
    Yisimayi, Ayijiang
    Huang, Weijin
    Li, Qianqian
    Wang, Peng
    An, Ran
    Wang, Yao
    Niu, Xiao
    Yang, Sijie
    Liang, Hui
    Sun, Haiyan
    Li, Tao
    Yu, Yuanling
    Cui, Qianqian
    Liu, Shuo
    Yang, Xiaodong
    Du, Shuo
    Zhang, Zhiying
    Hao, Xiaohua
    Shao, Fei
    Jin, Ronghua
    Wang, Xiangxi
    Xiao, Junyu
    Wang, Youchun
    Xie, Xiaoliang Sunney
    [J]. NATURE, 2022, 602 (7898) : 657 - +
  • [20] Molecular fingerprint similarity search in virtual screening
    Cereto-Massague, Adria
    Jose Ojeda, Maria
    Valls, Cristina
    Mulero, Miguel
    Garcia-Vallve, Santiago
    Pujadas, Gerard
    [J]. METHODS, 2015, 71 : 58 - 63