Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state microsupercapacitors

被引:159
作者
Liu, Shuangyu [1 ,2 ]
Xie, Jian [1 ,3 ]
Li, Haibo [4 ]
Wang, Ye [2 ]
Yang, Hui Ying [2 ]
Zhu, Tiejun [1 ]
Zhang, Shichao [5 ]
Cao, Gaoshao [3 ]
Zhao, Xinbing [1 ,3 ]
机构
[1] Zhejiang Univ, Dept Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Singapore Univ Technol & Design, Singapore 138682, Singapore
[3] Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou, Zhejiang, Peoples R China
[4] Ningxia Univ, Key Lab Ningxia Photovolta Mat, Yinchuan 750021, Peoples R China
[5] Beijing Univ Aeronaut & Astronaut, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
MICRO-SUPERCAPACITORS; ELECTROCHEMICAL CAPACITORS; ENERGY-STORAGE; GRAPHITE OXIDE; QUANTUM DOTS; HIGH-POWER; CARBON; FILMS; REDUCTION; CHIP;
D O I
10.1039/c4ta03192j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid development of microelectronic devices has stimulated an increasing demand for micro-energy storage devices, typically, micro-supercapacitors (MSCs). Despite recent advances, the fabrication of MSCs using a facile, scalable and inexpensive method still remains challenging. In this work, we use a facile screen printing technique to fabricate flexible all-solid-state MSCs using N-doped reduced graphene oxide (rGO) as the electrode material. The effective area of MSCs and the thickness of the active material are only 0.396 cm(2) and 10 mu m, respectively. The MSCs can deliver a high specific areal capacitance of 3.4 mF cm(-2), which is among the high values of graphene-based materials for all-solid-state MSCs reported so far Easy fabrication and good performance make MSCs promising on-chip energy storage devices.
引用
收藏
页码:18125 / 18131
页数:7
相关论文
共 48 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193
[3]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors [J].
El-Kady, Maher F. ;
Strong, Veronica ;
Dubin, Sergey ;
Kaner, Richard B. .
SCIENCE, 2012, 335 (6074) :1326-1330
[5]   A low-temperature method to produce highly reduced graphene oxide [J].
Feng, Hongbin ;
Cheng, Rui ;
Zhao, Xin ;
Duan, Xiangfeng ;
Li, Jinghong .
NATURE COMMUNICATIONS, 2013, 4
[6]   Cellulose nanofiber-graphene all solid-state flexible supercapacitors [J].
Gao, Kezheng ;
Shao, Ziqiang ;
Li, Jia ;
Wang, Xi ;
Peng, Xiaoqing ;
Wang, Wenjun ;
Wang, Feijun .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :63-67
[7]  
Gao W, 2011, NAT NANOTECHNOL, V6, P496, DOI [10.1038/NNANO.2011.110, 10.1038/nnano.2011.110]
[8]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[9]   Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips [J].
Huang, Peihua ;
Heon, Min ;
Pech, David ;
Brunet, Magali ;
Taberna, Pierre-Louis ;
Gogotsi, Yury ;
Lofland, Samuel ;
Hettinger, Jeffrey D. ;
Simon, Patrice .
JOURNAL OF POWER SOURCES, 2013, 225 :240-244
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339