Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

被引:375
作者
Verrelst, Jochem [1 ]
Malenovsky, Zbynek [2 ,3 ,4 ]
Van der Tol, Christiaan [5 ]
Camps-Valls, Gustau [1 ]
Gastellu-Etchegorry, Jean-Philippe [6 ]
Lewis, Philip [7 ,8 ]
North, Peter [9 ]
Moreno, Jose [1 ]
机构
[1] Univ Valencia, IPL, Parc Cient, Valencia 46980, Spain
[2] Univ Tasmania, Sch Technol Environm & Design, Surveying & Spatial Sci Grp, Private Bag 76, Hobart, Tas 7001, Australia
[3] Global Change Res Inst CAS, Remote Sensing Dept, Belidla 986-4a, Brno 60300, Czech Republic
[4] NASA, USRA GESTAR, Biospher Sci Lab, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[5] Univ Twente, Fac ITC, Dept Water Resources, POB 217, NL-7500 AE Enschede, Netherlands
[6] Univ Toulouse, Ctr Etud Spatiales Biosphere UPS, CNES, CNRS,IRD, F-31401 Toulouse 9, France
[7] UCL, Dept Geog, Pearson Bldg,Gower St, London WC1E 6BT, England
[8] Univ Leicester, Natl Ctr Earth Observat, Dept Phys & Astron, Michael Atiyah Bldg, Leicester LE1 7RH, Leics, England
[9] Swansea Univ, Dept Geog, Swansea SA2 8PP, W Glam, Wales
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
Imaging spectroscopy; Retrieval; Vegetation properties; Parametric and nonparametric regression; Machine learning; Radiative transfer models; Inversion; Uncertainties; LEAF CHLOROPHYLL CONTENT; RADIATIVE-TRANSFER MODEL; RED-EDGE POSITION; SUPPORT VECTOR MACHINE; HYPERSPECTRAL CANOPY REFLECTANCE; LUT-BASED INVERSION; AREA INDEX; NITROGEN CONCENTRATION; CONTINUUM REMOVAL; GREEN LAI;
D O I
10.1007/s10712-018-9478-y
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.
引用
收藏
页码:589 / 629
页数:41
相关论文
共 247 条
[1]   Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Abdel-Rahman, Elfatih M. ;
Ismail, Riyad .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (02) :693-714
[2]   The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery [J].
Addink, Elisabeth A. ;
de Jong, Steven M. ;
Pebesma, Edzer J. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (08) :905-912
[3]   Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis [J].
Ali, Abebe Mohammed ;
Skidmore, Andrew K. ;
Darvishzadeh, Roshanak ;
van Duren, Iris ;
Holzwarth, Stefanie ;
Mueller, Joerg .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 122 :68-80
[4]   Improved global simulations of gross primary product based on a separate and explicit treatment of diffuse and direct sunlight [J].
Alton, P. B. ;
Ellis, R. ;
Los, S. O. ;
North, P. R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D7)
[5]  
[Anonymous], 2018, Machine learning based hyperspectral image analysis: a survey
[6]   Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications [J].
Xue, Jinru ;
Su, Baofeng .
JOURNAL OF SENSORS, 2017, 2017
[7]   Plant Family-Specific Impacts of Petroleum Pollution on Biodiversity and Leaf Chlorophyll Content in the Amazon Rainforest of Ecuador [J].
Arellano, Paul ;
Tansey, Kevin ;
Balzter, Heiko ;
Tellkamp, Markus .
PLOS ONE, 2017, 12 (01)
[8]   Efficient Kernel Orthonormalized PLS for Remote Sensing Applications [J].
Arenas-Garcia, Jeronimo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10) :2872-2881
[9]   An Investigation Into Machine Learning Regression Techniques for the Leaf Rust Disease Detection Using Hyperspectral Measurement [J].
Ashourloo, Davoud ;
Aghighi, Hossein ;
Matkan, Ali Akbar ;
Mobasheri, Mohammad Reza ;
Rad, Amir Moeini .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (09) :4344-4351
[10]   Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy [J].
Atzberger, Clement ;
Darvishzadeh, Roshanak ;
Immitzer, Markus ;
Schlerf, Martin ;
Skidmore, Andrew ;
le Maire, Guerric .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 43 :19-31