A Computational Framework for Lithium Ion Cell-Level Model Predictive Control Using a Physics-Based Reduced-Order Model

被引:15
作者
Xavier, Marcelo A. [1 ,2 ]
de Souza, Aloisio K. [1 ]
Karami, Kiana [3 ]
Plett, Gregory L. [1 ]
Trimboli, M. Scott [1 ]
机构
[1] Univ Colorado, Dept Elect & Comp Engn, Colorado Springs, CO 80918 USA
[2] Ford Motor Co, Dept Res & Adv Engn, Dearborn, MI 48124 USA
[3] Penn State Harrisburg, Dept Elect Engn & Elect Engn Technol, Middletown, PA 17057 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2021年 / 5卷 / 04期
关键词
Lithium-ion batteries; model predictive control; physics-based model; DEPOSITION; CHARGE;
D O I
10.1109/LCSYS.2020.3038131
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most state-of-the art battery-control strategies rely on voltage-based design limits to address performance and lifetime concerns. Such approaches are inherently conservative. However, by exploiting internal electrochemical quantities, it is possible to control battery performance right up to true physical bounds. This letter develops an extensible framework that combines model predictive control (MPC) with computationally efficient realization algorithm (xRA)-generated reduced-order electrochemical models for the advanced control of lithium-ion batteries. The approach is demonstrated on the fast-charge problem where hard constraints are imposed on problem variables to avoid lithium plating induced performance degradation. This letter establishes a general mathematical foundation for the incorporation of electrochemically rich reduced-order models directly into an MPC framework.
引用
收藏
页码:1387 / 1392
页数:6
相关论文
共 27 条
[1]   Optimal battery charging, Part I: Minimizing time-to-charge, energy loss, and temperature rise for OCV-resistance battery model [J].
Abdollahi, A. ;
Han, X. ;
Awari, G. V. ;
Raghunathan, N. ;
Balasingam, B. ;
Pattipati, K. R. ;
Bar-Shalom, Y. .
JOURNAL OF POWER SOURCES, 2016, 303 :388-398
[2]  
Aldrich L. L., 2014, THESIS
[3]   Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes [J].
Arora, P ;
Doyle, M ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3543-3553
[4]  
Bryson A. E., 1975, APPL OPTIMAL CONTROL, P458
[5]  
de Souza AK, 2020, APPL POWER ELECT CO, P3534, DOI [10.1109/APEC39645.2020.9124431, 10.1109/apec39645.2020.9124431]
[6]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533
[7]   SIMULATION AND OPTIMIZATION OF THE DUAL LITHIUM ION INSERTION CELL [J].
FULLER, TF ;
DOYLE, M ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (01) :1-10
[8]   A comparative study of equivalent circuit models for Li-ion batteries [J].
Hu, Xiaosong ;
Li, Shengbo ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2012, 198 :359-367
[9]  
Jobman R., 2015, Journal of Energy Challenges and Mechanics, V2, P45
[10]  
Karami K., 2013, THESIS