The transport and mediation mechanisms of the common sugars in Escherichia coli

被引:83
作者
Luo, Yane [1 ]
Zhang, Tao [1 ]
Wu, Hui [2 ]
机构
[1] Northwest Univ, Sch Chem Engn, Xian, Shaanxi, Peoples R China
[2] Rice Univ, Dept Bioengn, Houston, TX USA
基金
中国国家自然科学基金;
关键词
Escherichia coli; Low-cost sugars; Sugar transport system; Regulation; BACTERIAL PHOSPHOTRANSFERASE SYSTEM; L-ARABINOSE TRANSPORT; CARBON CATABOLITE REPRESSION; N-TERMINAL DOMAIN; RECOMBINANT PROTEIN-PRODUCTION; PHOSPHORYL TRANSFER COMPLEX; GLUCOSE-LACTOSE DIAUXIE; CAMP RECEPTOR PROTEIN; ENZYME-I; SUCROSE METABOLISM;
D O I
10.1016/j.biotechadv.2014.04.009
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Escherichia coli can uptake and utilize many common natural sugars to form biomass or valuable target bio-products. Carbon catabolite repression (CCR) will occur and hamper the efficient production of bio-products if E. coli strains are cultivated in a mixture of sugars containing some preferred sugar, such as glucose. Understanding the transport and metabolism mechanisms of the common and inexpensive sugars in E. coli is important for further improving the efficiency of sugar bioconversion and for reducing industrial fermentation costs using the methods of metabolic engineering, synthetic biology and systems biology. In this review, the transport and mediation mechanisms of glucose, fructose, sucrose, xylose and arabinose are discussed and summarized, and the hierarchical utilization principles of these sugars are elucidated. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:905 / 919
页数:15
相关论文
共 216 条
[1]  
AHLEM C, 1982, J BIOL CHEM, V257, P2926
[2]   REGULATION OF FRUCTOSE UPTAKE BY GLUCOSE IN ESCHERICHIA-COLI [J].
AMARAL, D ;
KORNBERG, HL .
JOURNAL OF GENERAL MICROBIOLOGY, 1975, 90 (SEP) :157-168
[3]   The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli [J].
Archer, Colin T. ;
Kim, Jihyun F. ;
Jeong, Haeyoung ;
Park, Jin Hwan ;
Vickers, Claudia E. ;
Lee, Sang Yup ;
Nielsen, Lars K. .
BMC GENOMICS, 2011, 12
[4]   Metabolic engineering applications to renewable resource utilization [J].
Aristidou, A ;
Penttilä, M .
CURRENT OPINION IN BIOTECHNOLOGY, 2000, 11 (02) :187-198
[5]   Improvement of biomass yield and recombinant gene expression in Escherichia coli by using fructose as the primary carbon source [J].
Aristidou, AA ;
San, KY ;
Bennett, GN .
BIOTECHNOLOGY PROGRESS, 1999, 15 (01) :140-145
[6]   Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11 [J].
Asghari, A ;
Bothast, RJ ;
Doran, JB ;
Ingram, LO .
JOURNAL OF INDUSTRIAL MICROBIOLOGY, 1996, 16 (01) :42-47
[7]   MOLECULAR ANALYSIS OF 2 FRUCTOKINASES INVOLVED IN SUCROSE METABOLISM OF ENTERIC BACTERIA [J].
AULKEMEYER, P ;
EBNER, R ;
HEILENMANN, G ;
JAHREIS, K ;
SCHMID, K ;
WRIEDEN, S ;
LENGELER, JW .
MOLECULAR MICROBIOLOGY, 1991, 5 (12) :2913-2922
[8]   L-LYXOSE METABOLISM EMPLOYS THE L-RHAMNOSE PATHWAY IN MUTANT-CELLS OF ESCHERICHIA-COLI ADAPTED TO GROW ON L-LYXOSE [J].
BADIA, J ;
GIMENEZ, R ;
BALDOMA, L ;
BARNES, E ;
FESSNER, WD ;
AGUILAR, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (16) :5144-5150
[9]   A quantitative approach to catabolite repression in Escherichia coli [J].
Bettenbrock, K ;
Fischer, S ;
Kremling, A ;
Jahreis, K ;
Sauter, T ;
Gilles, ED .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (05) :2578-2584
[10]   Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12 [J].
Bettenbrock, Katja ;
Sauter, Thomas ;
Jahreis, Knut ;
Kremling, Andreas ;
Lengeler, Joseph W. ;
Gilles, Ernst-Dieter .
JOURNAL OF BACTERIOLOGY, 2007, 189 (19) :6891-6900