Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators

被引:192
|
作者
Bai, Peng [1 ,2 ]
Zhu, Guang [1 ]
Zhou, Yu Sheng [1 ]
Wang, Sihong [1 ]
Ma, Jusheng [2 ]
Zhang, Gong [2 ]
Wang, Zhong Lin [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
triboelectric nanogenerator; modulation; dipole moment; ENERGY-CONVERSION; FILMS; POLYMERS; METALS; ELECTROPHOTOGRAPHY; INSULATORS; SEPARATION; SURFACE; PHYSICS; DRIVEN;
D O I
10.1007/s12274-014-0461-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) have been demonstrated as an effective way to harvest mechanical energy to drive small electronics. The density of triboelectric charges generated on contact surfaces between two distinct materials is a critical factor for dictating the output power. We demonstrate an approach to effectively tune the triboelectric properties of materials by taking advantage of the dipole moment in polarized polyvinylidene fluoride (PVDF), leading to substantial enhancement of the output power density of the TENG. The output voltage ranged from 72 V to 215 V under a constant contact force of 50 N. This work not only provides a new method of enhancing output power of TENGs, but also offers an insight into charge transfer in contact electrification by investigating dipole-moment-induced effects on the electrical output of TENGs.
引用
收藏
页码:990 / 997
页数:8
相关论文
共 50 条
  • [1] Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators
    Peng Bai
    Guang Zhu
    Yu Sheng Zhou
    Sihong Wang
    Jusheng Ma
    Gong Zhang
    Zhong Lin Wang
    Nano Research, 2014, 7 : 990 - 997
  • [2] From contact electrification to triboelectric nanogenerators
    Wang, Zhong Lin
    REPORTS ON PROGRESS IN PHYSICS, 2021, 84 (09)
  • [3] The Adhesion-Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
    Lapcinskis, Linards
    Malnieks, Kaspars
    Blums, Juris
    Knite, Maris
    Oras, Sven
    Kaambre, Tanel
    Vlassov, Sergei
    Antsov, Mikk
    Timusk, Martin
    Sutka, Andris
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2020, 305 (01)
  • [4] The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators
    Sutka, Andris
    Malnieks, Kaspars
    Lapcinskis, Linards
    Kaufelde, Paula
    Linarts, Artis
    Berzina, Astrida
    Zabels, Roberts
    Jurkans, Vilnis
    Gornevs, Ilgvars
    Blums, Juris
    Knite, Maris
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (08) : 2417 - 2421
  • [5] Control methods and applications of interface contact electrification of triboelectric nanogenerators: a review
    Wang, Nannan
    Liu, Yupeng
    Ye, Enyi
    Li, Zibiao
    Wang, Daoai
    MATERIALS RESEARCH LETTERS, 2022, 10 (03): : 97 - 123
  • [6] Contact-electrification enabled water-resistant triboelectric nanogenerators as demonstrator educational appliances
    Vivekananthan, Venkateswaran
    Chandrasekhar, Arunkumar
    Dudem, Bhaskar
    Khandelwal, Gaurav
    Silva, S. Ravi
    Kim, Sang-Jae
    JOURNAL OF PHYSICS-ENERGY, 2024, 6 (01):
  • [7] Electrification Mechanism and Influence Factors of Sliding Triboelectric Nanogenerators Based on Micro-Contact Model
    Li, Tao
    Long, Wei
    Xu, Xuhui
    Feng, Lang
    Chen, Ye
    ENERGY TECHNOLOGY, 2024, 12 (04)
  • [9] Contact Electrification at Adhesive Interface: Boosting Charge Transfer for High-Performance Triboelectric Nanogenerators
    Shi, Kunming
    Chai, Bin
    Zou, Haiyang
    Wen, Zhen
    He, Meng
    Chen, Jie
    Jiang, Pingkai
    Huang, Xingyi
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (50)
  • [10] First-principles investigations on the contact electrification mechanism between metal and amorphous polymers for triboelectric nanogenerators
    Wu, Jun
    Wang, Xiaoli
    Li, Hanqing
    Wang, Feng
    Hu, Yanqiang
    NANO ENERGY, 2019, 63