The electrochemical performance of sodium-ion-modified spinel LiMn2O4 used for lithium-ion batteries

被引:20
|
作者
Xiong, Lilong [1 ,2 ]
Xu, Youlong [1 ,2 ]
Lei, Pei [1 ,2 ]
Tao, Tao [1 ,2 ]
Dong, Xin [1 ,2 ]
Song, Jie [3 ]
机构
[1] Xi An Jiao Tong Univ, Elect Mat Res Lab, Key Lab, Minist Educ, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Xian 710049, Peoples R China
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
Rate capability; Ion diffusion; Lithium ion batteries; THIN-FILMS; HIGH-POWER; CYCLING PERFORMANCE; CATHODE; AL; INTERCALATION; TEMPERATURE; CONDUCTION; NANOWIRES; BEHAVIOR;
D O I
10.1007/s10008-013-2307-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The spinel LiMn2O4 cathode material has been considered as one of the most potential cathode active materials for rechargeable lithium ion batteries. The sodium-doped LiMn2O4 is synthesized by solid-state reaction. The X-ray diffraction analysis reveals that the Li1-x Na (x) Mn2O4 (0 a parts per thousand currency signaEuro parts per thousand x a parts per thousand currency signaEuro parts per thousand 0.01) exhibits a single phase with cubic spinel structure. The particles of the doped samples exhibit better crystallinity and uniform distribution. The diffusion coefficient of the Li0.99Na0.01Mn2O4 sample is 2.45 x 10(-10) cm(-2) s(-1) and 3.74 x 10(-10) cm(-2) s(-1), which is much higher than that of the undoped spinel LiMn2O4 sample, indicating the Na+-ion doping is favorable to lithium ion migration in the spinel structure. The galvanostatic charge-discharge results show that the Na+-ion doping could improve cycling performance and rate capability, which is mainly due to the higher ion diffusion coefficient and more stable spinel structure.
引用
收藏
页码:713 / 719
页数:7
相关论文
共 50 条
  • [1] The electrochemical performance of sodium-ion-modified spinel LiMn2O4 used for lithium-ion batteries
    Lilong Xiong
    Youlong Xu
    Pei Lei
    Tao Tao
    Xin Dong
    Jie Song
    Journal of Solid State Electrochemistry, 2014, 18 : 713 - 719
  • [2] Electrochemical performance of nanosized LiMn2O4 for lithium-ion batteries
    Wu, HM
    Tu, JP
    Yuan, YF
    Li, Y
    Zhang, WK
    Huang, H
    PHYSICA B-CONDENSED MATTER, 2005, 369 (1-4) : 221 - 226
  • [3] Electrochemical Performance Ni Doped Spinel LiMn2O4 Cathode for Lithium Ion Batteries
    Cui YongLi
    Bao WenJing
    Yuan Zheng
    Zhuang QuanChao
    Sun Zhi
    RENEWABLE AND SUSTAINABLE ENERGY, PTS 1-7, 2012, 347-353 : 290 - 300
  • [4] The role of oxygen vacancies in the performance of LiMn2O4 spinel cathodes for lithium-ion batteries
    Wang, Jing
    Xing, Haiyang
    Hou, Wenqiang
    Xu, Youlong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (28) : 18903 - 18914
  • [5] Fabrications and electrochemical properties of fluorine-modified spinel LiMn2O4 for lithium ion batteries
    Wu, C
    Wu, F
    Chen, LQ
    Huang, XJ
    SOLID STATE IONICS, 2002, 152 : 327 - 334
  • [6] Precipitation synthesis and enhanced electrochemical performance of graphene-modified LiMn2O4 for lithium-ion batteries
    Axiang Li
    Zhongcai Shao
    Shihong Yang
    Xuetian Li
    Aili Zhang
    Ionics, 2020, 26 : 3231 - 3238
  • [7] LiMn2O4 for 4 V lithium-ion batteries
    Manev, V
    Banov, B
    Momchilov, A
    Nassalevskaa, A
    JOURNAL OF POWER SOURCES, 1995, 57 (1-2) : 99 - 103
  • [8] LiMn2O4 for 4 V lithium-ion batteries
    Bulgarian Acad of Sciences, Sofia, Bulgaria
    J Power Sources, 1-2 (99-103):
  • [9] Synthesis and electrochemical properties of nanostructured LiMn2O4 for lithium-ion batteries
    Li, Xueliang
    Xiang, Ruming
    Su, Tao
    Qian, Yitai
    MATERIALS LETTERS, 2007, 61 (17) : 3597 - 3600
  • [10] Effects on surface modification of spinel LiMn2O4 material for lithium-ion batteries
    Lee, CW
    Kim, HS
    Moon, SI
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 123 (03): : 234 - 237