Kesten's incipient infinite cluster and quasi-multiplicativity of crossing probabilities

被引:2
作者
Basu, Deepan [1 ]
Sapozhnikov, Artem [2 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Leipzig, Dept Math, Augustuspl 10, D-04109 Leipzig, Germany
关键词
incipient infinite cluster; percolation; criticality; quasi-multiplicativity; slab; PERCOLATION;
D O I
10.1214/17-ECP56
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider Bernoulli percolation on an infinite connected bounded degrees graph G. Assuming the uniqueness of the infinite open cluster and a quasi-multiplicativity of crossing probabilities, we prove the existence of Kesten's incipient infinite cluster. We show that our assumptions are satisfied if G is a slab Z(2) x {0, ... , k}(d-2) (d >= 2, k >= 0). We also argue that the quasi-multiplicativity assumption should hold for G = Z(d) when d < 6, but not when d > 6.
引用
收藏
页数:12
相关论文
共 24 条
[1]   On the number of incipient spanning clusters [J].
Aizenman, M .
NUCLEAR PHYSICS B, 1997, 485 (03) :551-582
[2]  
Basu D, 2016, THESIS
[3]  
Benjamini I., 1996, ELECTRON COMMUN PROB, V1, P71
[4]  
Borgs C, 1999, RANDOM STRUCT ALGOR, V15, P368, DOI 10.1002/(SICI)1098-2418(199910/12)15:3/4<368::AID-RSA9>3.0.CO
[5]  
2-B
[6]   ON THE UPPER CRITICAL DIMENSION OF BERNOULLI PERCOLATION [J].
CHAYES, JT ;
CHAYES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) :27-48
[7]  
Coniglio A., 1985, Physics of Finely Divided Matter, P84, DOI DOI 10.1007/978-3-642-93301-111
[8]   Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters [J].
Damron, Michael ;
Sapozhnikov, Artem .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (1-2) :257-294
[9]   Absence of Infinite Cluster for Critical Bernoulli Percolation on Slabs [J].
Duminil-Copin, Hugo ;
Sidoravicius, Vladas ;
Tassion, Vincent .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (07) :1397-1411
[10]   Monotonicity of uniqueness for percolation on Cayley graphs:: all infinite clusters are born simultaneously [J].
Häggström, O ;
Peres, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (02) :273-285