Genetic algorithms using low-discrepancy sequences

被引:0
作者
Kimura, Shuhei [1 ]
Matsumura, Koki [1 ]
机构
[1] Tottori Univ, Dept Informat & Knowlege Engn, Fac Engn, Tottori 680, Japan
来源
GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2 | 2005年
关键词
genetic algorithm; random number generator; pseudo-random number sequence; low-discrepancy sequence;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The-random number generator is one of the important components of evolutionary algorithms (EAs). Therefore, when we try to solve function optimization problems using EAs, we must carefully choose a good pseudo-random number generator. In EAs, the pseudo-random number generator is often used for creating uniformly distributed individuals. As the low-discrepancy sequences allow us to create individuals more uniformly than the random number sequences, we apply the low-discrepancy sequence generator, instead of the pseudo-random number the search performances of EAs.
引用
收藏
页码:1341 / 1346
页数:6
相关论文
共 19 条
[1]  
Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888
[2]   A NOTE ON THE GENERATION OF RANDOM NORMAL DEVIATES [J].
BOX, GEP ;
MULLER, ME .
ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (02) :610-611
[3]  
CANTUPAZ E, 2002, P GEN EV COMP C GECC, P754
[4]  
Daida JM, 1999, GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P1851
[5]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P61, DOI 10.1109/CEC.2002.1006210
[6]  
ESHELMAN LJ, 1993, P FDN GEN ALG, V2, P187
[7]  
Halton J.H., 1960, NUMER MATH, V2, P84, DOI DOI 10.1007/BF01386213
[8]  
Kimura S., 2000, Transactions of the Society of Instrument and Control Engineers, V36, P1162
[9]  
Kita H., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1581, DOI 10.1109/CEC.1999.782672
[10]  
Matsumoto M., 1998, ACM Transactions on Modeling and Computer Simulation, V8, P3, DOI 10.1145/272991.272995