LEARNING TO SYNTHESIZE CORTICAL MORPHOLOGICAL CHANGES USING GRAPH CONDITIONAL VARIATIONAL AUTOENCODER

被引:0
作者
Chai, Yaqiong [1 ]
Liu, Mengting [1 ]
Duffy, Ben A. [1 ]
Kim, Hosung [1 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Stevens Neuroimaging & Informat Inst, Los Angeles, CA 90007 USA
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
基金
美国国家卫生研究院;
关键词
Cortical thickness; variational autoencoders; deep neural network; graph; brain aging;
D O I
10.1109/ISBI48211.2021.9433837
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Changes in brain morphology, such as cortical thinning are of great value for understanding the trajectory of brain aging and various neurodegenerative diseases. In this work, we employed a generative neural network variational autoencoder (VAE) that is conditional on age and is able to generate cortical thickness maps at various ages given an input cortical thickness map. To take into account the mesh topology in the model, we proposed a loss function based on weighted adjacency to integrate the surface topography defined as edge connections with the cortical thickness mapped as vertices. Compared to traditional conditional VAE that did not use the surface topological information, our method better predicted "future" cortical thickness maps, especially when the age gap became wider. Our model has the potential to predict the distinctive temporospatial pattern of individual cortical morphology in relation to aging and neurodegenerative diseases.
引用
收藏
页码:1495 / 1499
页数:5
相关论文
共 20 条
  • [1] Akrami H, 2020, I S BIOMED IMAGING, P786, DOI [10.1109/ISBI45749.2020.9098405, 10.1109/isbi45749.2020.9098405]
  • [2] Antipov G, 2017, IEEE IMAGE PROC, P2089, DOI 10.1109/ICIP.2017.8296650
  • [3] Modelling the Progression of Alzheimer's Disease in MRI Using Generative Adversarial Networks
    Bowles, Christopher
    Gunn, Roger
    Hammers, Alexander
    Rueckert, Daniel
    [J]. MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [4] Chartsias A., 2019, INT C MED IM COMP CO
  • [5] Defferrard M, 2016, ADV NEUR IN, V29
  • [6] Goodfellow I., 2020, ADV NEUR IN, V63, P139, DOI [DOI 10.1145/3422622, 10.1145/3422622]
  • [7] A spatio-temporal reference model of the aging brain
    Huizinga, W.
    Poot, D. H. J.
    Vernooij, M. W.
    Roshchupkin, G. V.
    Bron, E. E.
    Ikram, M. A.
    Rueckert, D.
    Niessen, W. J.
    Klein, S.
    [J]. NEUROIMAGE, 2018, 169 : 11 - 22
  • [8] Relationships between biomarkers in aging and dementia
    Jagust, W. J.
    Landau, S. M.
    Shaw, L. M.
    Trojanowski, J. Q.
    Koeppe, R. A.
    Reiman, E. M.
    Foster, N. L.
    Petersen, R. C.
    Weiner, M. W.
    Price, J. C.
    Mathis, C. A.
    [J]. NEUROLOGY, 2009, 73 (15) : 1193 - 1199
  • [9] Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification
    Kim, JS
    Singh, V
    Lee, JK
    Lerch, J
    Ad-Dab'bagh, Y
    MacDonald, D
    Lee, JM
    Kim, SI
    Evans, AC
    [J]. NEUROIMAGE, 2005, 27 (01) : 210 - 221
  • [10] Kingma Diederik, 2014, AUTOENCODING VARIATI