COMBINATORIAL IDENTITIES AND HYPERGEOMETRIC FUNCTIONS

被引:2
作者
Alzer, Horst [1 ]
Richards, Kendall C. [1 ]
机构
[1] Southwestern Univ, Georgetown, TX 78626 USA
关键词
combinatorial identity; hypergeometric function; Jacobi polynomial;
D O I
10.1216/rmj.2022.52.1921
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use properties of the Gaussian hypergeometric function to prove the following identities for combinatorial polynomials: Sigma(n) (j =0) (n+alpha j ) (n+beta n- j) z(j) = (n+alpha n) Sigma(n) (j =0) (n j) (n+j+alpha+ss j) / (J + alpha J) (Z -1)(n-j) and m(m+n m) (1-z)(n) Sigma(n) (K=0) (nk)/m+k (z/1-z)(k) - Sigma(n) (k=0) (m+n k) (-z)(k) = Sigma(n) (k=0) (m+n k) (-z)(n) (k) - Sigma(n) (k=0) (m+n n-k) (-z)(n k). These formulas extend two combinatorial identities published by Brereton et al. in 2011.
引用
收藏
页码:1921 / 1928
页数:8
相关论文
共 7 条
[1]   COMBINATORIAL IDENTITIES AND TRIGONOMETRIC INEQUALITIES [J].
Alzer, Horst ;
Kwong, Man Kam ;
Pan, Hao .
COLLOQUIUM MATHEMATICUM, 2016, 145 (02) :291-305
[2]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[3]  
Askey R., 1975, Orthogonal Polynomials and Special Functions
[4]   Why Delannoy numbers? [J].
Banderier, C ;
Schwer, S .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 135 (01) :40-54
[5]  
Brereton J, 2011, ELECTRON J COMB, V18
[6]  
Petkovsek Marko, 1996, A B
[7]  
Prudnikov A. P., 1986, Integrals and Series: More special functions. Integrals and Series, V3