Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory

被引:93
|
作者
Sahmani, S. [1 ]
Bahrami, M. [1 ]
Ansari, R. [2 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Univ Guilan, Dept Mech Engn, Rasht, Iran
关键词
Micromechanics; Functionally graded materials; Nonlinear vibration; Strain gradient elasticity theory; Third-order shear deformation theory; ORDER BEAM THEORY; DYNAMIC STABILITY;
D O I
10.1016/j.compstruct.2013.12.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In the present investigation, a numerical analysis is conducted to predict size-dependent nonlinear free vibration characteristics of third-order shear deformable microbeams made of functionally graded materials (FGMs). For this purpose, the modified strain gradient elasticity theory and von Karman geometric nonlinearity are implemented into the classical third-order shear deformation beam theory to develop a nonclassical higher-order beam model including three additional length scale parameters to capture size effect efficiently. It is assumed that the material properties of the FGM microbeams are evaluated by the Mod-Tanaka homogenization technique. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized along various end supports by employing generalized differential quadrature (GDQ) method. A direct iterative process corresponding to both positive and negative deflection cycles is adopted. Secondly, a parametric study is performed to demonstrate the influences of the values of dimensionless length scale parameter, material property gradient index and length to thickness aspect ratio on the linear and nonlinear natural frequencies of FGM microbeams. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:219 / 230
页数:12
相关论文
共 50 条