Automorphic and endomorphic reducibility and primitive endomorphisms of free metabelian groups

被引:7
作者
Gupta, CK [1 ]
Timoshenko, EI [1 ]
机构
[1] ACAD CIVIL ENGN,NOVOSIBIRSK 63008,RUSSIA
关键词
D O I
10.1080/00927879708826040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be the free metabelian group of rank 2. In this paper we prove the following results:(i) Given a pair of elements 9, h of S, there exists an algorithm to decide whether or not g is an automorphic image of h; (ii) If g, h are in the commutator subgroup S' of S such that each is an endomorphic image of the other then g, h are automorphic; (iii) if an endomorphism of S maps primitive elements of S to primitive elements of S then it defines an automorphism of S. We also include an example to show that, in (ii) above, the requirement that g,h are in S' can not be relaxed.
引用
收藏
页码:3057 / 3070
页数:14
相关论文
共 12 条
[1]  
BACHMUTH S, 1967, J ALGEBRA, V40, P19
[2]   PRESENTATIONS OF THE FREE METABELIAN GROUP OF RANK-2 [J].
EVANS, MJ .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :468-472
[3]   SOME APPLICATIONS OF ARTAMONOV-QUILLEN-SUSLIN THEOREMS TO METABELIAN INNER RANK AND PRIMITIVITY [J].
GUPTA, CK ;
GUPTA, ND ;
NOSKOV, GA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (02) :298-307
[4]  
IVANOV SV, ENDOMORPHISMS FREE G
[5]  
Krasnikov A. F., 1978, MAT ZAMETKI, V24, P167
[6]  
Lyndon R. C., 1977, Combinatorial group theory, V89
[7]  
Mal'cev A., 1962, ALGEBRA LOGIKA+, V1, P45
[8]  
ROMANKOV VA, 1979, SIBERIAN MATH J+, V20, P469
[9]  
ROMANKOV VA, 1991, UKR MAT ZH, V0043, P00996
[10]  
SHMELKIN AA, 1967, ALGEBRA LOGIKA, V6, P93