Tensile characteristics and fracture energy of fiber reinforced and non-reinforced ultra high performance concrete (UHPC)

被引:33
作者
Voit, Klaus [1 ]
Kirnbauer, Johannes [2 ]
机构
[1] Univ Nat Resources & Life Sci, Inst Struct Engn, A-1190 Vienna, Austria
[2] Vienna Univ Technol, Inst Bldg Construct & Technol, A-1040 Vienna, Austria
关键词
Fracture energy; Tensile behavior; UHPC; Steel fibers; Vacuum mixing; Curing; Thermal treatment;
D O I
10.1007/s10704-014-9951-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the framework of this study, various mixtures of fiber reinforced and non-reinforced ultra high performance concrete (UHPFRC and UHPC) were produced and tested with focus on the determination of the fracture energy and its comparison to standard mechanical material parameters. For some mixtures a compressive strength of more than 300 MPa was reached still retaining good fresh characteristics of the UHPC. These mixtures were examined for properties of fresh and hardened concrete, focusing on tensile strength properties and fracture energy. The fracture energy was determined to describe the work capacity, i.e. the potential energy intake until the failure of the material. Thereby, a significant increase of the work capacity could be achieved by the addition of steel fibers. Furthermore, the impact of a vacuum treatment of the freshly mixed concrete in regard to fresh and hardened concrete characteristics as well as the influence of aftertreatment (heat treatment and water storage) on compressive and tensile properties of the UHPC was investigated.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 50 条
  • [41] Influence of Fiber Volume Fraction and Fiber Orientation on the Uniaxial Tensile Behavior of Rebar-Reinforced Ultra-High Performance Concrete
    Roy, Manish
    Hollmann, Corey
    Wille, Kay
    FIBERS, 2019, 7 (07):
  • [42] Tensile Response of Reinforced Ultra-High-Performance Fiber-Reinforced Cementitious Composites: Modeling and Design Recommendations
    Valente, Rui
    Pimentel, Mario
    ACI STRUCTURAL JOURNAL, 2023, 120 (01) : 149 - 161
  • [43] Bond performance of carbon fiber reinforced polymer rebars in ultra-high-performance concrete
    Zhu, Haitang
    He, Yunjian
    Cai, Gaochuang
    Cheng, Shengzhao
    Zhang, Yin
    Larbi, Amir Si
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 387
  • [44] An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers
    Yoo, Doo-Yeol
    Kim, Soonho
    Kim, Jae-Jin
    Chun, Booki
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 206 : 46 - 61
  • [45] Mechanical properties of recycled steel fiber reinforced ultra-high-performance concrete
    Yang J.
    Peng G.
    Shui G.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2019, 36 (08): : 1949 - 1956
  • [46] Shear behavior of fiber-reinforced ultra-high performance concrete beams
    Meszoely, Tamas
    Randl, Norbert
    ENGINEERING STRUCTURES, 2018, 168 : 119 - 127
  • [47] Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Smarzewski, Piotr
    Barnat-Hunek, Danuta
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2018, 16 (6A) : 593 - 606
  • [48] Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete
    Piotr Smarzewski
    Danuta Barnat-Hunek
    International Journal of Civil Engineering, 2018, 16 : 593 - 606
  • [49] Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete
    Meraji, Leila
    Afshin, Hasan
    Abedi, Karim
    COMPUTERS AND CONCRETE, 2019, 24 (02) : 159 - 172
  • [50] Influence of elevated temperature on the engineering properties of ultra-high-performance fiber-reinforced concrete
    Abadel, Aref A.
    Khan, M. Iqbal
    Masmoudi, Radhouane
    MATERIALS SCIENCE-POLAND, 2023, 41 (01) : 140 - 160