Necessary conditions of exponential stability for a class of linear neutral-type time-delay systems

被引:6
作者
Zhang, Xian [1 ]
Zhao, Ning [1 ]
Shi, Peng [2 ,3 ]
机构
[1] Heilongjiang Univ, Sch Math Sci, Harbin 150080, Heilongjiang, Peoples R China
[2] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Victoria Univ, Coll Engn & Sci, Melbourne, Vic 8001, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Exponential stability; neutral-type time-delay systems; complete-type Lyapunov-Krasovskii functional;
D O I
10.1080/00207179.2017.1390259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a class of linear neutral-type time-delay systems (NTTDSs), this paper will present necessary exponential stability conditions by employing the Lyapunov--Krasovskii functional approach. Since these conditions are represented by the Lyapunov matrix and the neutral coefficient matrix, they not only offer a novel tool for analysing stability of linear NTTDSs by characterising instability domains, but also extend the existing results of the neutral-delay-free systems. As a medium step, the relations between the Lyapunov matrix and the fundamental matrix are characterised. The validation of the obtained results is explained by numerical examples and comparison with some existing results.
引用
收藏
页码:1289 / 1297
页数:9
相关论文
共 22 条
  • [1] Necessary Stability Conditions for Delay Systems With Multiple Pointwise and Distributed Delays
    Cuvas, Carlos
    Mondie, Sabine
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (07) : 1987 - 1994
  • [2] Necessary conditions for the exponential stability of time-delay systems via the Lyapunov delay matrix
    Egorov, A. V.
    Mondie, S.
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (12) : 1760 - 1771
  • [3] Necessary stability conditions for linear delay systems
    Egorov, Alexey V.
    Mondie, Sabine
    [J]. AUTOMATICA, 2014, 50 (12) : 3204 - 3208
  • [4] Necessary Stability Conditions for Neutral Type Systems With a Single Delay
    Gomez, Marco A.
    Egorov, Alexey V.
    Mondie, Sabine
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4691 - 4697
  • [5] Gomez MA, 2016, IEEE DECIS CONTR P, P3149, DOI 10.1109/CDC.2016.7798741
  • [6] Necessary exponential stability conditions for linear periodic time-delay systems
    Gomez, Marco A.
    Ochoa, Gilberto
    Mondie, Sabine
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (18) : 3996 - 4007
  • [7] Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems
    Kharitonov, VL
    Zhabko, AP
    [J]. AUTOMATICA, 2003, 39 (01) : 15 - 20
  • [8] Kharitonov VL, 2013, Time-delay systems: Lyapunov functionals and matrices
  • [9] Kolmanovskii V. B., 1986, Stability of functional differential equations
  • [10] Krasovskii N. N., 1956, Prikl. Mat. Mekh., V20, P315