Genome-Wide analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis)

被引:50
作者
Liu, Huanlong [1 ,3 ]
Wu, Min [1 ,2 ]
Zhu, Dongyue [1 ]
Pan, Feng [1 ]
Wang, Yujiao [1 ]
Wang, Yue [1 ]
Xiang, Yan [1 ,2 ,3 ]
机构
[1] Anhui Agr Univ, Sch Forestry & Landscape Architecture, Lab Modern Biotechnol, Hefei 230036, Peoples R China
[2] Anhui Agr Univ, Sch Life Sci, Key Lab Crop Biol Anhui Prov, Hefei 230036, Peoples R China
[3] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Peoples R China
基金
中国国家自然科学基金;
关键词
Moso bamboo; Amino acid/auxin permease; Phylogenetic analysis; Conversed motif; Expression patterns; qRT-PCR; AMINO-ACID TRANSPORTER; MULTIPLE SEQUENCE ALIGNMENT; EXPRESSION ANALYSIS; SUBSTRATE-SPECIFICITY; DEVELOPING SEEDS; ARABIDOPSIS; PERMEASE; IDENTIFICATION; CELLS; GENERATION;
D O I
10.1186/s12870-017-0980-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Members of the amino acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolism and biosynthesis processes. Comprehensive analysis of AAAP genes has been conducted in Arabidopsis, rice, maize and poplar, but has not been reported from moso bamboo. Phylogenetics, evolutionary patterns and further expression profiles analysis of the AAAP gene family in moso bamboo (Phyllostachys edulis) will increase our understanding of this important gene family. Results: In this current study, we conducted phylogenetic, gene structure, promoter region, divergence time, expression patterns and qRT-PCR analysis of the 55 predicted AAAP genes in moso bamboo based on the availability of the moso bamboo genome sequence. We identified 55 putative AAAP (PeAAAP1-55) genes, which were divided into eight distinct subfamilies based on comparative phylogenetic analysis using 184 full-length protein sequences, including 55 sequences from moso bamboo, 58 sequences from rice and 71 sequences from maize. Analysis of evolutionary patterns and divergence showed that the PeAAAP genes have undergone a extensive duplication event approximately 12 million years ago (MYA) and that the split between AAAP family genes in moso bamboo and rice occurred approximately 27 MYA. The microarray analysis suggested that some genes play considerable roles in moso bamboo growth and development. We investigated the expression levels of the 16 AAP subfamily genes under abiotic stress (drought, salt and cold) by qRT-PCR to explore the potential contributions to stress response of individual PeAAAP genes in moso bamboo. Conclusions: The results of this study suggest that PeAAAP genes play crucial roles in moso bamboo growth and development, especially in response to abiotic stress conditions. Our comprehensive, systematic study of the AAAPs gene family in moso bamboo will facilitate further analysis of the functions and evolution of AAAP genes in plants.
引用
收藏
页数:18
相关论文
共 64 条
[1]  
[Anonymous], 2011, PLOS ONE, DOI DOI 10.1371/journal.pone.0020596
[2]  
[Anonymous], J PROTEOMICS BIOINFO
[3]  
[Anonymous], MOL GEN GENOMICS
[4]  
Bateman A, 2002, NUCLEIC ACIDS RES, V30, P276, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[5]   Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism [J].
Bennett, MJ ;
Marchant, A ;
Green, HG ;
May, ST ;
Ward, SP ;
Millner, PA ;
Walker, AR ;
Schulz, B ;
Feldmann, KA .
SCIENCE, 1996, 273 (5277) :948-950
[6]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[7]   The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J].
Cannon S.B. ;
Mitra A. ;
Baumgarten A. ;
Young N.D. ;
May G. .
BMC Plant Biology, 4 (1)
[8]   The vegetative vacuole proteorne of Arabidopsis thaliana reveals predicted and unexpected proteins [J].
Carter, C ;
Pan, SQ ;
Zouhar, J ;
Avila, EL ;
Girke, T ;
Raikhel, NV .
PLANT CELL, 2004, 16 (12) :3285-3303
[9]   Topology of NAT2, a prototypical example of a new family of amino acid transporters [J].
Chang, HC ;
Bush, DR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30552-30557
[10]   ANT1, an aromatic and neutral amino acid transporter in Arabidopsis [J].
Chen, LS ;
Ortiz-Lopez, A ;
Jung, A ;
Bush, DR .
PLANT PHYSIOLOGY, 2001, 125 (04) :1813-1820