TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES

被引:22
作者
Zhu, Ke [1 ]
Yu, Philip L. H. [2 ]
Li, Wai Keung [2 ]
机构
[1] Chinese Acad Sci, Inst Appl Math, Beijing, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
关键词
AR(p) model; bootstrap method; buffered AR(p) model; likelihood ratio test; marked empirical process; threshold AR(p) model; LIKELIHOOD RATIO TESTS; THRESHOLD AUTOREGRESSION; NUISANCE PARAMETER; MODEL;
D O I
10.5705/ss.2012.311
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper investigates a quasi-likelihood ratio (LR) test for the thresholds in buffered autoregressive processes. Under the null hypothesis of no threshold, the LR test statistic converges to a function of a centered Gaussian process. Under local alternatives, this LR test has nontrivial asymptotic power. A bootstrap method is proposed to obtain the critical value for the LR test. Simulation studies and an example are given to assess the performance of the test. The proof here is not standard and can be used in other non-linear time series models.
引用
收藏
页码:971 / 984
页数:14
相关论文
共 29 条
[1]  
Andrews D.W.K., 1993, ECONOMET REV, V12, P183
[2]   TESTS FOR PARAMETER INSTABILITY AND STRUCTURAL-CHANGE WITH UNKNOWN CHANGE-POINT [J].
ANDREWS, DWK .
ECONOMETRICA, 1993, 61 (04) :821-856
[3]   Threshold autoregression with a unit root [J].
Caner, M ;
Hansen, BE .
ECONOMETRICA, 2001, 69 (06) :1555-1596
[4]  
CHAN KS, 1990, J ROY STAT SOC B MET, V52, P469
[5]  
CHAN KS, 1991, J ROY STAT SOC B MET, V53, P691
[6]   TESTING FOR THRESHOLD AUTOREGRESSION [J].
CHAN, KS .
ANNALS OF STATISTICS, 1990, 18 (04) :1886-1894
[7]   HYPOTHESIS TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER ALTERNATIVE [J].
DAVIES, RB .
BIOMETRIKA, 1977, 64 (02) :247-254
[8]  
DAVIES RB, 1987, BIOMETRIKA, V74, P33, DOI 10.2307/2336019
[9]  
DOUKHAN P, 1995, ANN I H POINCARE-PR, V31, P393
[10]   Threshold effects in non-dynamic panels: Estimation, testing, and inference [J].
Hansen, BE .
JOURNAL OF ECONOMETRICS, 1999, 93 (02) :345-368