Cavity solitons in vertical-cavity surface-emitting lasers

被引:20
作者
Vladimirov, A. G. [1 ,2 ]
Pimenov, A. [1 ]
Gurevich, S. V. [3 ]
Panajotov, K. [4 ,5 ]
Averlant, E. [4 ,6 ]
Tlidi, M. [6 ]
机构
[1] Weierstrass Inst, D-10117 Berlin, Germany
[2] St Petersburg State Univ, Fac Phys, St Petersburg 199034, Russia
[3] Univ Munster, Inst Theoret Phys, D-48149 Munster, Germany
[4] Vrije Univ Brussel, Dept Appl Phys & Photon IR TONA, B-1050 Brussels, Belgium
[5] Inst Solid State Phys, BU-1784 Sofia, Bulgaria
[6] ULB, Fac Sci, B-1050 Brussels, Belgium
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2014年 / 372卷 / 2027期
基金
爱尔兰科学基金会;
关键词
semiconductor lasers; cavity solitons; delayed feedback; bifurcations; drift instability; LOCALIZED STRUCTURES; TRANSVERSE PATTERNS; NONLINEAR OPTICS;
D O I
10.1098/rsta.2014.0013
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate a control of the motion of localized structures (LSs) of light by means of delay feedback in the transverse section of a broad area nonlinear optical system. The delayed feedback is found to induce a spontaneous motion of a solitary LS that is stationary and stable in the absence of feedback. We focus our analysis on an experimentally relevant system, namely the vertical-cavity surface-emitting laser (VCSEL). We first present an experimental demonstration of the appearance of LSs in a 80 mu m aperture VCSEL. Then, we theoretically investigate the self-mobility properties of the LSs in the presence of a time-delayed optical feedback and analyse the effect of the feedback phase and the carrier lifetime on the delay-induced spontaneous drift instability of these structures. We show that these two parameters affect strongly the space-time dynamics of two-dimensional LSs. We derive an analytical formula for the threshold associated with drift instability of LSs and a normal form equation describing the slow time evolution of the speed of the moving structure.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices [J].
Ackemann, Thorsten ;
Firth, William J. ;
Oppo, Gian-Luca .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 57, 2009, 57 :323-421
[2]  
[Anonymous], 2003, Optical Solitons
[3]   Experimental observation of localized structures in medium size VCSELs [J].
Averlant, Etienne ;
Tlidi, Mustapha ;
Thienpont, Hugo ;
Ackemann, Thorsten ;
Panajotov, Krassimir .
OPTICS EXPRESS, 2014, 22 (01) :762-772
[4]  
Barbay S., 2011, Advances in Optical Technologies, DOI 10.1155/2011/628761
[5]   Cavity solitons as pixels in semiconductor microcavities [J].
Barland, S ;
Tredicce, JR ;
Brambilla, M ;
Lugiato, LA ;
Balle, S ;
Giudici, M ;
Maggipinto, T ;
Spinelli, L ;
Tissoni, G ;
Knödl, T ;
Miller, M ;
Jäger, R .
NATURE, 2002, 419 (6908) :699-702
[6]   Effects of translational coupling on dissipative localized states [J].
del Campo, F. ;
Haudin, F. ;
Rojas, R. G. ;
Bortolozzo, U. ;
Clerc, M. G. ;
Residori, S. .
PHYSICAL REVIEW E, 2012, 86 (03)
[7]   Effect of frequency detunings and finite relaxation rates on laser localized structures [J].
Fedorov, SV ;
Vladimirov, AG ;
Khodova, GV ;
Rosanov, NN .
PHYSICAL REVIEW E, 2000, 61 (05) :5814-5824
[8]   Cavity soliton laser based on mutually coupled semiconductor microresonators [J].
Genevet, P. ;
Barland, S. ;
Giudici, M. ;
Tredicce, J. R. .
PHYSICAL REVIEW LETTERS, 2008, 101 (12)
[9]   Instabilities of Localized Structures in Dissipative Systems with Delayed Feedback [J].
Gurevich, S. V. ;
Friedrich, R. .
PHYSICAL REVIEW LETTERS, 2013, 110 (01)
[10]   Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback [J].
Gurevich, Svetlana V. .
PHYSICAL REVIEW E, 2013, 87 (05)