Discrete-time systems with slope restricted nonlinearities: Zames-Falb multiplier analysis using external positivity

被引:14
作者
Turner, Matthew C. [1 ]
Drummond, Ross [2 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton S013 1BJ, Hants, England
[2] Univ Oxford, Dept Engn Sci, Oxford, England
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
absolute stability; integral quadratic constraints; robust control; STABILITY MULTIPLIERS; SECTOR; GAIN;
D O I
10.1002/rnc.5391
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article exploits positive systems theory in the search for Zames-Falb multipliers for the analysis of discrete-time Lurie systems, where the nonlinearity is assumed to be slope-restricted. Although a similar problem has been tackled in a continuous time context, the results in discrete-time take a different form and require a somewhat different approach to overcome certain technical problems. The work has two compelling features: (i) the arising algorithms are completely convex; and (ii) numerical results compare well with the state-of-the-art in some cases, providing the least conservative result in one instance.
引用
收藏
页码:2255 / 2273
页数:19
相关论文
共 32 条
[1]   A Less Conservative LMI Condition for Stability of Discrete-Time Systems With Slope-Restricted Nonlinearities [J].
Ahmad, N. Syazreen ;
Carrasco, J. ;
Heath, W. P. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (06) :1692-1697
[2]   LMI-Based Stability Criteria for Discrete-Time Lur'e Systems With Monotonic, Sector- and Slope-Restricted Nonlinearities [J].
Ahmad, N. Syazreen ;
Heath, William P. ;
Li, Guang .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) :459-465
[3]  
Altshuller DA., 2012, FREQUENCY DOMAIN CRI, V432
[4]   Delay-Integral-Quadratic Constraints and Stability Multipliers for Systems With MIMO Nonlinearities [J].
Altshuller, Dmitry A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (04) :738-747
[5]  
Carrasco J., 2021, P AM CONTR C UNPUB
[6]   Convex Searches for Discrete-Time Zames-Falb Multipliers [J].
Carrasco, Joaquin ;
Heath, William P. ;
Zhang, Jingfan ;
Ahmad, Nur Syazreen ;
Wang, Shuai .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) :4538-4553
[7]   LMI searches for anticausal and noncausal rational Zames-Falb multipliers [J].
Carrasco, Joaquin ;
Maya-Gonzalez, Martin ;
Lanzon, Alexander ;
Heath, William P. .
SYSTEMS & CONTROL LETTERS, 2014, 70 :17-22
[8]   Comments on "On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities" [J].
Carrasco, Joaquin ;
Heath, William P. ;
Li, Guang ;
Lanzon, Alexander .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) :2422-2428
[9]   Computation of Zames-Falb Multipliers Revisited [J].
Chang, Michael ;
Mancera, Ricardo ;
Safonov, Michael .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) :1024-1029
[10]  
Colaneri P., 2008, IFAC P, V41, P1299