Multi-epoch machine learning 1: Unravelling nature versus nurture for galaxy formation

被引:16
作者
McGibbon, Robert J. [1 ]
Khochfar, Sadegh [1 ]
机构
[1] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland
关键词
methods: numerical; galaxies: evolution; galaxies: haloes; galaxies: statistics; cosmology: theory; large-scale structure of Universe; DARK-MATTER HALOES; BILLION YEARS PROJECT; ILLUSTRISTNG SIMULATIONS; STELLAR MASS; HYDRODYNAMICAL SIMULATIONS; COSMOLOGICAL SIMULATIONS; BLACK-HOLES; EVOLUTION; POPULATIONS; MODELS;
D O I
10.1093/mnras/stac1269
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel machine learning method for predicting the baryonic properties of dark matter only subhaloes from N-body simulations. Our model is built using the extremely randomized tree (ERT) algorithm and takes subhalo properties over a wide range of redshifts as its input features. We train our model using the IllustrisTNG simulations to predict black hole mass, gas mass, magnitudes, star formation rate, stellar mass, and metallicity. We compare the results of our method with a baseline model from previous works, and against a model that only considers the mass history of the subhalo. We find that our new model significantly outperforms both of the other models. We then investigate the predictive power of each input by looking at feature importance scores from the ERT algorithm. We produce feature importance plots for each baryonic property, and find that they differ significantly. We identify low redshifts as being most important for predicting star formation rate and gas mass, with high redshifts being most important for predicting stellar mass and metallicity, and consider what this implies for nature versus nurture. We find that the physical properties of galaxies investigated in this study are all driven by nurture and not nature. The only property showing a somewhat stronger impact of nature is the present-day star formation rate of galaxies. Finally we verify that the feature importance plots are discovering physical patterns, and that the trends shown are not an artefact of the ERT algorithm.
引用
收藏
页码:5423 / 5437
页数:15
相关论文
共 83 条
[1]   Planck 2015 results XIII. Cosmological parameters [J].
Ade, P. A. R. ;
Aghanim, N. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartlett, J. G. ;
Bartolo, N. ;
Battaner, E. ;
Battye, R. ;
Benabed, K. ;
Benoit, A. ;
Benoit-Levy, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bonaldi, A. ;
Bonavera, L. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Chary, R. -R. ;
Chiang, H. C. ;
Chluba, J. ;
Christensen, P. R. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Colombo, L. P. L. ;
Combet, C. ;
Coulais, A. ;
Crill, B. P. ;
Curto, A. ;
Cuttaia, F. ;
Danese, L. ;
Davies, R. D. ;
Davis, R. J. ;
de Bernardis, P. .
ASTRONOMY & ASTROPHYSICS, 2016, 594
[2]   Painting galaxies into dark matter haloes using machine learning [J].
Agarwal, Shankar ;
Dave, Romeel ;
Bassett, Bruce A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 478 (03) :3410-3422
[3]  
Agnihotri A., 2020, Distill, V5, DOI [DOI 10.23915/DISTILL.00026, 10.23915/distill.00026]
[4]  
[Anonymous], 2021, IEEE Trans. Broadcast.
[5]   A primer on hierarchical galaxy formation: the semi-analytical approach [J].
Baugh, C. M. .
REPORTS ON PROGRESS IN PHYSICS, 2006, 69 (12) :3101-3156
[6]   The halo occupation distribution: Toward an empirical determination of the relation between galaxies and mass [J].
Berlind, AA ;
Weinberg, DH .
ASTROPHYSICAL JOURNAL, 2002, 575 (02) :587-616
[7]   Resolving cosmic structure formation with the Millennium-II Simulation [J].
Boylan-Kolchin, Michael ;
Springel, Volker ;
White, Simon D. M. ;
Jenkins, Adrian ;
Lemson, Gerard .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 398 (03) :1150-1164
[8]   The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions [J].
Cole, S ;
Norberg, P ;
Baugh, CA ;
Frenk, CS ;
Bland-Hawthorn, J ;
Bridges, T ;
Cannon, R ;
Colless, M ;
Collins, C ;
Couch, W ;
Cross, N ;
Dalton, G ;
De Propris, R ;
Driver, SP ;
Efstathiou, G ;
Ellis, RS ;
Glazebrook, K ;
Jackson, C ;
Lahav, O ;
Lewis, I ;
Lumsden, S ;
Maddox, S ;
Madgwick, D ;
Peacock, JA ;
Peterson, BA ;
Sutherland, W ;
Taylor, K .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 326 (01) :255-273
[9]   Semi-analytic galaxies - I. Synthesis of environmental and star-forming regulation mechanisms [J].
Cora, Sofia A. ;
Vega-Martinez, Cristian A. ;
Hough, Tomas ;
Ruiz, Andres N. ;
Orsi, Alvaro A. ;
Munoz Arancibia, Alejandra M. ;
Gargiulo, Ignacio D. ;
Collacchioni, Florencia ;
Padilla, Nelson D. ;
Gottloeber, Stefan ;
Yepes, Gustavo .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (01) :2-24
[10]   THE HAWAII K-BAND GALAXY SURVEY .1. DEEP K-BAND IMAGING [J].
COWIE, LL ;
GARDNER, JP ;
HU, EM ;
SONGAILA, A ;
HODAPP, KW ;
WAINSCOAT, RJ .
ASTROPHYSICAL JOURNAL, 1994, 434 (01) :114-127