Solid-State Hydrogen Storage: Storage Capacity, Thermodynamics, and Kinetics

被引:11
|
作者
Osborn, William [1 ]
Markmaitree, Tippawan [1 ]
Shaw, Leon L. [1 ]
Ren, Ruiming [2 ]
Hu, Jianzhi [3 ]
Kwak, Ja Hun [3 ]
Yang, Zhenguo [3 ]
机构
[1] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
[2] Dalian Jiaotong Univ, Sch Mat Sci & Engn, Dalian, Peoples R China
[3] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
N-H SYSTEMS; X-RAY-DIFFRACTION; MECHANICAL ACTIVATION; REACTION PATHWAY; LITHIUM HYDRIDE; METAL-HYDRIDES; H-2; STORAGE; DEHYDRIDING REACTION; DEHYDROGENATION; DESORPTION;
D O I
10.1007/s11837-009-0051-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid-state reversible hydrogen storage systems hold great promise for on-board applications. The key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodynamic properties, and fast hydriding and dehydriding kinetics. The LiNH2 + LiH system has been utilized as an example system to illustrate these critical issues that are common among other solid-state reversible storage materials. The progress made in thermodynamic destabilization and kinetic enhancements via various approaches are emphasized. The implications of these advancements in the development of future solid-state reversible hydrogen storage materials are discussed.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条
  • [1] Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics
    William Osborn
    Tippawan Markmaitree
    Leon L. Shaw
    Ruiming Ren
    Jianzhi Hu
    Ja Hun Kwak
    Zhenguo Yang
    JOM, 2009, 61 : 45 - 51
  • [2] Aluminum hydride for solid-state hydrogen storage:Structure,synthesis, thermodynamics, kinetics, and regeneration
    Haizhen Liu
    Longfei Zhang
    Hongyu Ma
    Chenglin Lu
    Hui Luo
    Xinhua Wang
    Xiantun Huang
    Zhiqiang Lan
    Jin Guo
    Journal of Energy Chemistry , 2021, (01) : 428 - 440
  • [3] Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration
    Liu, Haizhen
    Zhang, Longfei
    Ma, Hongyu
    Lu, Chenglin
    Luo, Hui
    Wang, Xinhua
    Huang, Xiantun
    Lan, Zhiqiang
    Guo, Jin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 428 - 440
  • [4] The kinetics of lightweight solid-state hydrogen storage materials: A review
    Khafidz, Nurul Zafirah Abd. Khalim
    Yaakob, Zahira
    Lim, Kean Long
    Timmiati, Sharifah Najiha
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (30) : 13131 - 13151
  • [5] Solid-state hydrogen storage materials
    Kalibek, M. R.
    Ospanova, A. D.
    Suleimenova, B.
    Soltan, R.
    Orazbek, T.
    Makhmet, A. M.
    Rafikova, Kh. S.
    Nuraje, N.
    DISCOVER NANO, 2024, 19 (01)
  • [6] Solid-State Hydrogen Storage for a Decarbonized Society
    Pistidda, Claudio
    HYDROGEN, 2021, 2 (04): : 428 - 443
  • [7] Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage
    Xu, Yaohui
    Li, Yuting
    Gao, Liangjuan
    Liu, Yitao
    Ding, Zhao
    NANOMATERIALS, 2024, 14 (12)
  • [8] Hydrogen Storage in Nickel Based Solid-State Materials
    Zvyagintseva, A., V
    Samofalova, A. S.
    VII INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE - PHYSICS, TECHNOLOGY, INNOVATIONS (PTI-2020), 2020, 2313
  • [9] SOLID-STATE REFRIGERATION FOR INTERPLANETARY SPACE STORAGE OF HYDROGEN
    SCHALLA, CA
    MECHANICAL ENGINEERING, 1965, 87 (06) : 58 - &
  • [10] Silicon nanostructures for solid-state hydrogen storage: A review
    Muduli, Rama Chandra
    Kale, Paresh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (04) : 1401 - 1439