The identification of neuro-fuzzy based MIMO Hammerstein model with separable input signals

被引:19
作者
Jia, Li [1 ]
Li, Xunlong [2 ]
Chiu, Min-Sen [3 ]
机构
[1] Shanghai Univ, Shanghai Key Lab Power Stn Automat Technol, Dept Automat, Coll Mechatron Engn & Automat, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Dept Automat, Coll Mechatron Engn & Automat, Shanghai 200072, Peoples R China
[3] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
基金
中国国家自然科学基金;
关键词
Correlation analysis method; Neuro-fuzzy system; MIMO Hammerstein process; Separable signals; SYSTEMS; WIENER; ALGORITHM;
D O I
10.1016/j.neucom.2015.06.089
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel identification method of neuro-fuzzy based MIMO Hammerstein model by using the correlation analysis method is presented in this paper. A special test signal that contains independent separable signals and uniformly random multi-step signal is adopted to identify the MIMO Hammerstein process, resulting in the identification problem of the linear model separated from that of nonlinear part. As a result, the identification of the dynamic linear element can be separated from the static nonlinear element without any redundant adjustable parameters. Moreover, it can circumvent the problem of initialization and convergence of the model parameters discussed in the existing iterative algorithms used for identification of MIMO Hammerstein model. Examples are used to illustrate the effectiveness of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:530 / 541
页数:12
相关论文
共 43 条
[1]   Identification and control of nonlinear systems using Fuzzy Hammerstein models [J].
Abonyi, J ;
Babuska, R ;
Botto, MA ;
Szeifert, F ;
Nagy, L .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (11) :4302-4314
[2]  
Al-Duwaish H., 2001, P 2001 IEEE INT C CO
[3]  
AlDuwaish H, 1997, AUTOMATICA, V33, P1871
[4]   Convergence of the iterative Hammerstein system identification algorithm [J].
Bai, EW ;
Li, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) :1929-1940
[5]   Identification of linear systems with hard input nonlinearities of known structure [J].
Bai, EW .
AUTOMATICA, 2002, 38 (05) :853-860
[6]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[7]   Continuous-time Hammerstein nonlinear modeling applied to distillation [J].
Bhandari, N ;
Rollins, D .
AICHE JOURNAL, 2004, 50 (02) :530-533
[8]  
Bussgang J. J., 1952, 216 MIT RES LAB EL
[9]   Identification of MIMO Hammerstein systems using cardinal spline functions [J].
Chan, Kwong Ho ;
Bao, Jie ;
Whiten, William J. .
JOURNAL OF PROCESS CONTROL, 2006, 16 (07) :659-670
[10]   Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems [J].
Chen, Jing ;
Zhang, Yan ;
Ding, Ruifeng .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1428-1434