Discovering symmetry invariants and conserved quantities by interpreting siamese neural networks

被引:45
作者
Wetzel, Sebastian J. [1 ]
Melko, Roger G. [1 ,2 ]
Scott, Joseph [3 ]
Panju, Maysum [4 ]
Ganesh, Vijay [5 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevResearch.2.033499
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce interpretable siamese neural networks (SNNs) for similarity detection to the field of theoretical physics. More precisely, we apply SNNs to events in special relativity, the transformation of electromagnetic fields, and the motion of particles in a central potential. In these examples, SNNs learn to identify data points belonging to the same event, field configuration, or trajectory of motion. We demonstrate that in the process of learning which data points belong to the same event or field configuration, these SNNs also learn the relevant symmetry invariants and conserved quantities. Such SNNs are highly interpretable, which enables us to reveal the symmetry invariants and conserved quantities without prior knowledge.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] [Anonymous], ARXIV191211052
  • [2] [Anonymous], ARXIV180403599
  • [3] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [4] Towards novel insights in lattice field theory with explainable machine learning
    Bluecher, Stefan
    Kades, Lukas
    Pawlowski, Jan M.
    Strodthoff, Nils
    Urban, Julian M.
    [J]. PHYSICAL REVIEW D, 2020, 101 (09)
  • [5] Machine learning quantum phases of matter beyond the fermion sign problem
    Broecker, Peter
    Carrasquilla, Juan
    Melko, Roger G.
    Trebst, Simon
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [6] Bromley J., 1993, International Journal of Pattern Recognition and Artificial Intelligence, V7, P669, DOI 10.1142/S0218001493000339
  • [7] Solving the quantum many-body problem with artificial neural networks
    Carleo, Giuseppe
    Troyer, Matthias
    [J]. SCIENCE, 2017, 355 (6325) : 602 - 605
  • [8] Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035]
  • [9] Machine Learning Phases of Strongly Correlated Fermions
    Ch'ng, Kelvin
    Carrasquilla, Juan
    Melko, Roger G.
    Khatami, Ehsan
    [J]. PHYSICAL REVIEW X, 2017, 7 (03):
  • [10] Chaoji, ARXIV170908761