Comparative Transcriptome Analysis of Short Fiber Mutants Ligon-Lintless 1 And 2 Reveals Common Mechanisms Pertinent to Fiber Elongation in Cotton (Gossypium hirsutum L.)

被引:32
|
作者
Gilbert, Matthew K. [1 ]
Kim, Hee Jin [1 ]
Tang, Yuhong [2 ]
Naoumkina, Marina [1 ]
Fang, David D. [1 ]
机构
[1] USDA ARS, Cotton Fiber Biosci Res Unit, So Reg Res Ctr, New Orleans, LA 70124 USA
[2] Samuel Roberts Noble Fdn Inc, Genom Core Facil, Ardmore, OK USA
来源
PLOS ONE | 2014年 / 9卷 / 04期
关键词
PECTIN METHYL ESTERASE; GENE-EXPRESSION; DOWN-REGULATION; GLYOXAL OXIDASE; LI-1; MUTANT; CELL-WALL; IN-VITRO; GROWTH; INITIATION; PATHWAYS;
D O I
10.1371/journal.pone.0095554
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the molecular processes affecting cotton (Gossypium hirsutum) fiber development is important for developing tools aimed at improving fiber quality. Short fiber cotton mutants Ligon-lintless 1 (Li-1) and Ligon-lintless 2 (Li-2) are naturally occurring, monogenic mutations residing on different chromosomes. Both mutations cause early cessation in fiber elongation. These two mutants serve as excellent model systems to elucidate molecular mechanisms relevant to fiber length development. Previous studies of these mutants using transcriptome analysis by our laboratory and others had been limited by the fact that very large numbers of genes showed altered expression patterns in the mutants, making a targeted analysis difficult or impossible. In this research, a comparative microarray analysis was conducted using these two short fiber mutants and their near isogenic wild type (WT) grown under both field and greenhouse environments in order to identify key genes or metabolic pathways common to fiber elongation. Analyses of three transcriptome profiles obtained from different growth conditions and mutant types showed that most differentially expressed genes (DEGs) were affected by growth conditions. Under field conditions, short fiber mutants commanded higher expression of genes related to energy production, manifested by the increasing of mitochondrial electron transport activity or responding to reactive oxygen species when compared to the WT. Eighty-eight DEGs were identified to have altered expression patterns common to both short fiber mutants regardless of growth conditions. Enrichment, pathway and expression analyses suggested that these 88 genes were likely involved in fiber elongation without being affected by growth conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.)
    Ma, Jianjiang
    Geng, Yanhui
    Pei, Wenfeng
    Wu, Man
    Li, Xingli
    Liu, Guoyuan
    Li, Dan
    Ma, Qifeng
    Zang, XinShan
    Yu, Shuxun
    Zhang, Jinfa
    Yu, Jiwen
    BMC GENOMICS, 2018, 19
  • [32] Transcriptome, proteome and functional characterization reveals salt stress tolerance mechanisms in upland cotton (Gossypium hirsutum L.)
    Sun, Kangtai
    Mehari, Teame Gereziher
    Fang, Hui
    Han, Jinlei
    Huo, Xuehan
    Zhang, Jingxia
    Chen, Yu
    Wang, Dongmei
    Zhuang, Zhimin
    Ditta, Allah
    Khan, Muhammad K. R.
    Zhang, Jun
    Wang, Kai
    Wang, Baohua
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [33] The Ligon lintless-2 Short Fiber Mutation Is Located within a Terminal Deletion of Chromosome 18 in Cotton1
    Patel, Jinesh D.
    Huang, Xianzhong
    Lin, Lifeng
    Das, Sayan
    Chandnani, Rahul
    Khanal, Sameer
    Adhikari, Jeevan
    Shehzad, Tariq
    Guo, Hui
    Roy-Zokan, Eileen M.
    Rong, Junkang
    Paterson, Andrew H.
    PLANT PHYSIOLOGY, 2020, 183 (01) : 277 - 288
  • [34] Transcriptome Analysis Reveals Crosstalk of Responsive Genes to Multiple Abiotic Stresses in Cotton (Gossypium hirsutum L.)
    Zhu, Ya-Na
    Shi, Dong-Qiao
    Ruan, Meng-Bin
    Zhang, Li-Li
    Meng, Zhao-Hong
    Liu, Jie
    Yang, Wei-Cai
    PLOS ONE, 2013, 8 (11):
  • [35] Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.)
    Mulugeta Seyoum Ademe
    Shoupu He
    Zhaoe Pan
    Junling Sun
    Qinglian Wang
    Hongde Qin
    Jinhai Liu
    Hui Liu
    Jun Yang
    Dongyong Xu
    Jinlong Yang
    Zhiying Ma
    Jinbiao Zhang
    Zhikun Li
    Zhongmin Cai
    Xuelin Zhang
    Xin Zhang
    Aifen Huang
    Xianda Yi
    Guanyin Zhou
    Lin Li
    Haiyong Zhu
    Baoyin Pang
    Liru Wang
    Yinhua Jia
    Xiongming Du
    Molecular Genetics and Genomics, 2017, 292 : 1267 - 1280
  • [36] Association mapping analysis of fiber yield and quality traits in Upland cotton (Gossypium hirsutum L.)
    Ademe, Mulugeta Seyoum
    He, Shoupu
    Pan, Zhaoe
    Sun, Junling
    Wang, Qinglian
    Qin, Hongde
    Liu, Jinhai
    Liu, Hui
    Yang, Jun
    Xu, Dongyong
    Yang, Jinlong
    Ma, Zhiying
    Zhang, Jinbiao
    Li, Zhikun
    Cai, Zhongmin
    Zhang, Xuelin
    Zhang, Xin
    Huang, Aifen
    Yi, Xianda
    Zhou, Guanyin
    Li, Lin
    Zhu, Haiyong
    Pang, Baoyin
    Wang, Liru
    Jia, Yinhua
    Du, Xiongming
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (06) : 1267 - 1280
  • [37] Comparative Metabolome and Transcriptome Analysis of Anthocyanin Biosynthesis in White and Pink Petals of Cotton (Gossypium hirsutum L.)
    Shao, Dongnan
    Liang, Qian
    Wang, Xuefeng
    Zhu, Qian-Hao
    Liu, Feng
    Li, Yanjun
    Zhang, Xinyu
    Yang, Yonglin
    Sun, Jie
    Xue, Fei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [38] Transcriptome analysis combined with metabolome analysis reveals the significant functions of CesA genes in cotton (Gossypium hirsutum) fiber length development
    CUI, Z. H. E. N. K. U. I.
    SUN, G. U. I. Q. I. N.
    ZHAO, Q. U. A. N. Z. H., I
    BIOCELL, 2022, 46 (09) : 2133 - 2144
  • [39] A DIALLEL ANALYSIS OF SEVERAL FIBER PROPERTY TRAITS IN UPLAND COTTON (GOSSYPIUM HIRSUTUM L) 2
    VERHALEN, LM
    MURRAY, JC
    CROP SCIENCE, 1969, 9 (03) : 310 - &
  • [40] Comparative transcriptome analysis of interspecific CSSLs reveals candidate genes and pathways involved in verticillium wilt resistance in cotton (Gossypium hirsutum L.)
    Li, Youzhong
    Zhang, Xinyu
    Lin, Zhongxu
    Zhu, Qian-Hao
    Li, Yanjun
    Xue, Fei
    Cheng, Shuaishuai
    Feng, Hongjie
    Sun, Jie
    Liu, Feng
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 197