To Identify Malware Using Machine Learning Algorithms

被引:0
|
作者
Pujari, Shivam [1 ]
Mandoria, H. L. [1 ]
Shrivastava, R. P. [1 ]
Singh, Rajesh [1 ]
机构
[1] Govind Ballabh Pant Univ Agr & Technol, Pantnagar 263145, Uttarakhand, India
来源
COMPUTING SCIENCE, COMMUNICATION AND SECURITY | 2022年 / 1604卷
关键词
Malware; Feature extraction; Feature selection; Machine learning; Weka explorer;
D O I
10.1007/978-3-031-10551-7_9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today's world depends on cyberspace since it is very useful for collecting information, data and transporting them in a secured manner. This security may be broken by various attackers by injecting malware to another device through various ways such as malicious links generally. Malware is like software that may harm the system of the user. The most commonly used malware nowadays is ransomware coverts files or any data to unused form by encryption and demands money for regaining original data. So we need a method to detect it to stop it to work in any condition like updating its signature etc. We propose a method to identify different types of malwares including ransomware with the use of API call data. We achieve the highest accuracy of 0.9636.
引用
收藏
页码:117 / 127
页数:11
相关论文
共 50 条
  • [41] Design of an Iterative Method for Malware Detection Using Autoencoders and Hybrid Machine Learning Models
    Beg, Rijvan
    Pateriya, R. K.
    Tomar, Deepak Singh
    IEEE ACCESS, 2024, 12 : 175032 - 175055
  • [42] Robust IoT Malware Detection and Classification Using Opcode Category Features on Machine Learning
    Lee, Hyunjong
    Kim, Sooin
    Baek, Dongheon
    Kim, Donghoon
    Hwang, Doosung
    IEEE ACCESS, 2023, 11 (18855-18867) : 18855 - 18867
  • [43] Analysis of Malware Behavior: Type Classification using Machine Learning
    Pirscoveanu, Radu S.
    Hansen, Steven S.
    Larsen, Thor M. T.
    Stevanovic, Matija
    Pedersen, Jens Myrup
    Czech, Alexandre
    2015 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), 2015,
  • [44] Comparison of Machine Learning Algorithms for Malware Detection Using EDGE-IIoTSET Dataset in IoT
    Alshehri, Jawaher
    Alhamed, Almaha
    Frikha, Mounir
    Rahman, M. M. Hafizur
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2025, 16 (01) : 1225 - 1238
  • [45] Behavior Analysis of Malware Using Machine Learning
    Dhammi, Arshi
    Singh, Maninder
    2015 EIGHTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2015, : 481 - 486
  • [46] Integrated Malware Analysis Using Machine Learning
    Singh, Akash Kumar
    Jain, Aruna
    2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), 2017, : 347 - 354
  • [47] A Preliminary Investigation into Using Machine Learning Algorithms to Identify Minimal and Equivalent Mutants
    Brito Junior, Claudinei
    Durelli, Vinicius H. S.
    Durelli, Rafael S.
    de Souza, Simone R. S.
    Vincenzi, Auri M. R.
    Delamaro, Marcio Eduardo
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS (ICSTW), 2020, : 304 - 313
  • [48] Static Malware Analysis Using Machine Learning Algorithms on APT1 Dataset with String and PE Header Features
    Balram, Neil
    Hsieh, George
    McFall, Christian
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 90 - 95
  • [49] Machine Learning in Malware Traffic Classifications
    Yu, Ken F.
    Harang, Richard E.
    MILCOM 2017 - 2017 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2017, : 6 - 10
  • [50] Preliminary Results of Applying Machine Learning Algorithms to Android Malware Detection
    Leeds, Matthew
    Atkison, Travis
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1070 - 1073