An Introduction to Latent Variable Mixture Modeling (Part 2): Longitudinal Latent Class Growth Analysis and Growth Mixture Models

被引:340
作者
Berlin, Kristoffer S. [1 ]
Parra, Gilbert R. [2 ]
Williams, Natalie A. [3 ]
机构
[1] Univ Memphis, Dept Psychol, Memphis, TN 38152 USA
[2] Univ So Mississippi, Dept Psychol, Hattiesburg, MS 39406 USA
[3] Univ Nebraska Lincoln, Dept Child Youth & Family Studies, Lincoln, NE USA
关键词
growth mixture modeling; latent class growth analysis; latent growth curve modeling; longitudinal data analysis; structural equation modeling; BODY-MASS INDEX; DEVELOPMENTAL TRAJECTORIES; SAMPLE-SIZE; CHILDHOOD; CHILDREN;
D O I
10.1093/jpepsy/jst085
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
Objective Pediatric psychologists are often interested in finding patterns in heterogeneous longitudinal data. Latent variable mixture modeling is an emerging statistical approach that models such heterogeneity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of the second of a 2-article set is to offer a nontechnical introduction to longitudinal latent variable mixture modeling. Methods 3 latent variable approaches to modeling longitudinal data are reviewed and distinguished. Results Step-by-step pediatric psychology examples of latent growth curve modeling, latent class growth analysis, and growth mixture modeling are provided using the Early Childhood Longitudinal Study-Kindergarten Class of 1998-1999 data file. Conclusions Latent variable mixture modeling is a technique that is useful to pediatric psychologists who wish to find groupings of individuals who share similar longitudinal data patterns to determine the extent to which these patterns may relate to variables of interest.
引用
收藏
页码:188 / 203
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 2002, Applied Latent Class Analysis
[2]  
[Anonymous], 2005, LATENT CURVE MODELS, DOI DOI 10.1002/0471746096
[3]  
Asparouhouv T., 2007, Wald test of mean equality for potential latent class predictors in mixture modeling
[4]   Flexible Models of Change: Using Structural Equations to Match Statistical and Theoretical Models of Multiple Change Processes [J].
Barker, David H. ;
Rancourt, Diana ;
Jelalian, Elissa .
JOURNAL OF PEDIATRIC PSYCHOLOGY, 2014, 39 (02) :233-245
[5]   An Introduction to Latent Variable Mixture Modeling (Part 1): Overview and Cross-Sectional Latent Class and Latent Profile Analyses [J].
Berlin, Kristoffer S. ;
Williams, Natalie A. ;
Parra, Gilbert R. .
JOURNAL OF PEDIATRIC PSYCHOLOGY, 2014, 39 (02) :174-187
[6]  
Collins L. M., 2009, Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences, V718
[7]   The Interactive Role of Socioeconomic Status, Race/Ethnicity, and Birth Weight on Trajectories of Body Mass Index Growth in Children and Adolescents [J].
Danner, Fred W. ;
Toland, Michael D. .
JOURNAL OF EARLY ADOLESCENCE, 2013, 33 (03) :293-314
[8]   Applications of individual growth curve modeling for pediatric psychology research [J].
DeLucia, Christian ;
Pitts, Steven C. .
JOURNAL OF PEDIATRIC PSYCHOLOGY, 2006, 31 (10) :1002-1023
[9]  
Duncan TE., 2006, An introduction to latent variable growth curve modeling: concept, issues, DOI DOI 10.4324/9780203879962
[10]   Nonlinear Growth Models in Mplus and SAS [J].
Grimm, Kevin J. ;
Ram, Nilam .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2009, 16 (04) :676-701