A problem with conditions given on inner characteristics and on the line of degeneracy for a mixed-type equation with singular coefficients

被引:4
作者
Ruziev, Menglibay Kholtojibaevich [1 ]
机构
[1] Natl Univ Uzbekistan, Inst Math, Tashkent, Uzbekistan
关键词
Singular Integral Equation; Unbounded Domain; Unique Solvability; Positive Maximum; Negative Minimum;
D O I
10.1186/1687-2770-2013-210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In an unbounded domain, we consider a problem with conditions given on inner characteristics in a hyperbolic part of the considered domain and on some parts of the line of parabolic degeneracy. We prove the unique solvability of the mentioned problem with the help of the extremum principle. The proof of solvability is based on the theory of singular integral equations, Wiener-Hopf equations and Fredholm integral equations.
引用
收藏
页数:10
相关论文
共 23 条
[1]  
Bers L., 1958, Surveys Appl. Math, Vvol 3
[2]  
Bitsadze A. V., 1981, Some Classes of Partial Differential Equations
[3]  
Flaisher NM, 1967, REV ROUMAINE MATH PU, V12, P1053
[4]  
Gakhov F. D., 1978, Equations of Convolution Type
[5]  
Gellerstedt S., 1938, ARK MAT ASTRON FYS, V26A, P1
[6]  
Hasanov A, 2010, MATH RES DEV, P73
[7]   Cauchy problem for linear thermoelastic systems, Part I: A unified approach [J].
Jachmann, Kay ;
Reissig, Michael .
INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2009, 2 (3-4) :170-201
[8]   The Dirichlet problem for a 3D elliptic equation with two singular coefficients [J].
Karimov, E. T. ;
Nieto, J. J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) :214-224
[9]  
Khairullin RS, 2005, IZV VYSS UCEBN ZAVED, V10, P72
[10]  
Krikunov YM, 1975, IZV VYSS UCEBN ZAVED, V6, P56