Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation

被引:17
作者
Wang, Keyan [1 ]
Wang, Qisheng [1 ]
Guan, Kaizhong [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Volterra-Fredholm integral equation; Iterative method; Convergence analysis; COLLOCATION METHODS; NUMERICAL-SOLUTION;
D O I
10.1016/j.amc.2013.09.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the iterative method is presented for numerically solving the nonlinear Volterra-Fredholm integral equation. First, considering some conditions on k(i) and lambda(i) (i = 1, 2) of the integral equation, then we define the equidistance collocation points and the integral part of equation is discretized by Newton-Cotes integration formula, finally, the approximate solutions of integral equation are obtain by iterative method. The convergence analysis of the integral equation is given. Some numerical examples are given to illustrate the accuracy and dependability of the method. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 637
页数:7
相关论文
共 12 条
[1]   Fredholm-Volterra integral equation of the first kind and contact problem [J].
Abdou, MA .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 125 (2-3) :177-193
[2]  
Andras S., 2003, MATHEMATIKA, V48, P147
[3]   A numerical scheme for a class of nonlinear Fredholm integral equations of the second kind [J].
Borzabadi, Akbar H. ;
Fard, Omid S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) :449-454
[4]   ON THE NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS BY COLLOCATION METHODS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :987-1000
[5]   On mixed collocation methods for Volterra integral equations with periodic solution [J].
Brunner, H ;
Makroglou, A ;
Miller, RK .
APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) :115-130
[6]   Direct and iterative methods for the numerical solution of mixed integral equations [J].
Calio, F. ;
Fernandez Munoz, V. ;
Marchetti, E. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) :3739-3746
[7]   Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method [J].
Ghasemi, M. ;
Kajani, M. Tavassoli ;
Babolian, E. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) :446-449
[8]  
Guo Q., 1995, J COMPUT APPL MATH, V59, P49
[9]  
Jerri A., 1999, Introduction to integral equations with applications
[10]   Lagrange collocation method for solving Volterra-Fredholm integral equations [J].
Wang, Keyan ;
Wang, Qisheng .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (21) :10434-10440