Degenerations of the moduli spaces of vector bundles on curves .1.

被引:33
作者
Nagaraj, DS
Seshadri, CS
机构
[1] INST MATH SCI, MATH GRP, MADRAS 600113, TAMIL NADU, INDIA
[2] SPIC, MATH INST, SCH MATH, MADRAS 600017, TAMIL NADU, INDIA
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1997年 / 107卷 / 02期
关键词
nodal curve; torsion free sheaf; moduli;
D O I
10.1007/BF02837721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y be a smooth projective curve degenerating to a reducible curve X with two components meeting transversally at one point. We show that the moduli space of vector bundles of rank two and odd determinant on Y degenerates to a moduli space on X which has nice properties, in particular, it has normal crossings. We also show that a nice degeneration exists when we fix the determinant. We give some conjectures concerning the degeneration of moduli space of vector bundles on Y with fixed determinant and arbitrary rank.
引用
收藏
页码:101 / 137
页数:37
相关论文
共 14 条
[1]  
[Anonymous], 1965, Geometric Invariant Theory
[2]  
ARTIN M, 1976, LECT NOTES TIFR
[3]  
DSOUZA C, 1979, P INDIAN AS-MATH SCI, V88, P419
[4]  
GIESEKER D, 1984, J DIFFER GEOM, V19, P173
[5]   MODULI OF VECTOR-BUNDLES ON CURVES WITH PARABOLIC STRUCTURES [J].
MEHTA, VB ;
SESHADRI, CS .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :205-239
[6]   FACTORIZATION OF GENERALIZED THETA-FUNCTIONS .1. [J].
NARASIMHAN, MS ;
RAMADAS, TR .
INVENTIONES MATHEMATICAE, 1993, 114 (03) :565-623
[7]  
NEWSTEAD PE, 1978, TIFR BOMBAY LECT NOT
[8]  
ODA T, 1979, T AM MATH SOC, V253, P1
[9]  
SCHESSINGER M, 1968, T AM MATH SOC, V130, P208
[10]   GEOMETRIC REDUCTIVITY OVER ARBITRARY BASE [J].
SESHADRI, CS .
ADVANCES IN MATHEMATICS, 1977, 26 (03) :225-274