Magnon dark modes and gradient memory

被引:298
作者
Zhang, Xufeng [1 ]
Zou, Chang-Ling [1 ,2 ,3 ]
Zhu, Na [1 ]
Marquardt, Florian [4 ,5 ]
Jiang, Liang [2 ]
Tang, Hong X. [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[3] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[4] Univ Erlangen Nurnberg, Inst Theoret Phys 2, D-91058 Erlangen, Germany
[5] Max Planck Inst Sci Light, D-91058 Erlangen, Germany
关键词
LINE-WIDTH; QUANTUM;
D O I
10.1038/ncomms9914
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories.
引用
收藏
页数:7
相关论文
共 50 条
[11]   A solid-state light-matter interface at the single-photon level [J].
de Riedmatten, Hugues ;
Afzelius, Mikael ;
Staudt, Matthias U. ;
Simon, Christoph ;
Gisin, Nicolas .
NATURE, 2008, 456 (7223) :773-777
[12]   COHERENCE IN SPONTANEOUS RADIATION PROCESSES [J].
DICKE, RH .
PHYSICAL REVIEW, 1954, 93 (01) :99-110
[13]   Optomechanical Dark Mode [J].
Dong, Chunhua ;
Fiore, Victor ;
Kuzyk, Mark C. ;
Wang, Hailin .
SCIENCE, 2012, 338 (6114) :1609-1613
[14]   Collective Coupling of a Macroscopic Number of Single-Molecule Magnets with a Microwave Cavity Mode [J].
Eddins, A. W. ;
Beedle, C. C. ;
Hendrickson, D. N. ;
Friedman, Jonathan R. .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[15]   High-Cooperativity Cavity QED with Magnons at Microwave Frequencies [J].
Goryachev, Maxim ;
Farr, Warrick G. ;
Creedon, Daniel L. ;
Fan, Yaohui ;
Kostylev, Mikhail ;
Tobar, Michael E. .
PHYSICAL REVIEW APPLIED, 2014, 2 (05)
[16]   Multimode Storage and Retrieval of Microwave Fields in a Spin Ensemble [J].
Grezes, C. ;
Julsgaard, B. ;
Kubo, Y. ;
Stern, M. ;
Umeda, T. ;
Isoya, J. ;
Sumiya, H. ;
Abe, H. ;
Onoda, S. ;
Ohshima, T. ;
Jacques, V. ;
Esteve, J. ;
Vion, D. ;
Esteve, D. ;
Molmer, K. ;
Bertet, P. .
PHYSICAL REVIEW X, 2014, 4 (02)
[17]   Light speed reduction to 17 metres per second in an ultracold atomic gas [J].
Hau, LV ;
Harris, SE ;
Dutton, Z ;
Behroozi, CH .
NATURE, 1999, 397 (6720) :594-598
[18]   Efficient quantum memory for light [J].
Hedges, Morgan P. ;
Longdell, Jevon J. ;
Li, Yongmin ;
Sellars, Matthew J. .
NATURE, 2010, 465 (7301) :1052-1056
[19]   Multimodal Properties and Dynamics of Gradient Echo Quantum Memory [J].
Hetet, G. ;
Longdell, J. J. ;
Sellars, M. J. ;
Lam, P. K. ;
Buchler, B. C. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[20]   Spatial-mode storage in a gradient-echo memory [J].
Higginbottom, D. B. ;
Sparkes, B. M. ;
Rancic, M. ;
Pinel, O. ;
Hosseini, M. ;
Lam, P. K. ;
Buchler, B. C. .
PHYSICAL REVIEW A, 2012, 86 (02)