Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries

被引:35
|
作者
Kim, Jin Il [1 ]
Choi, Young Gyun [1 ]
Ahn, Yeonho [2 ]
Kim, Dukjoon [2 ]
Park, Jong Hyeok [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
[2] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Solid polymer electrolyte; UV-Curing polymerization; Ionic pathway; Electrochemical stability; ELECTRIC VEHICLES; STATE; PERFORMANCE; CARBONATE); HYBRID;
D O I
10.1016/j.memsci.2020.118771
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solid electrolyte-based lithium-ion batteries (LIBs) have enormous potential to replace conventional LIBs with flammable liquid electrolytes. However, most solid electrolytes show low ionic conductivity and poor interfacial properties with electrodes, preventing them from reaching the level of conventional liquid electrolyte systems with separators. Herein, we optimized the formation of an ion-conductive pathway in a UV-cured solid polymer electrolyte (USPE) via a semi-interpenetrating polymer network with a minimal liquid content. The USPE consists of a UV-curable hard matrix (trimethylolpropane ethoxylate triacrylate, ETPTA) as a backbone film with negligible ionic conductivity and an optimized ionic channel with an ion-solvated gel polymer (Li+/PVdF-HFP) with a minimal liquid content for boosting the Li+ conduction. The hybrid solid-state film provides high ionic conductivity (up to 85%) relative to commercial liquid electrolyte systems and a stable electrochemical window. We also applied the same USPE with Na+ for solid electrolyte-based sodium ion batteries, and similar positive effects were also observed. Going another step forward, both the PVdF-HFP/ETPTA ratio and the HFP content in the PVdF-HFP are critical gel polymer additives for generating reinforced Li+ ion pathways in USPE.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Solid polymer electrolyte based on waterborne polyurethane for all-solid-state lithium ion batteries
    Bao, Junjie
    Tao, Can
    Yu, Ran
    Gao, Minghao
    Huang, Yiping
    Chen, Chunhua
    JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (48)
  • [22] Solid-state NMR studies on crystalline solid polymer electrolytes and important cathode materials for lithium-ion batteries
    Geng, Fushan
    Peng, Bo
    Yao, Yefeng
    Chen, Qun
    Hu, Bingwen
    ANNUAL REPORTS ON NMR SPECTROSCOPY, VOL 100, 2020, 100 : 265 - 308
  • [23] Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries
    Shim, Jimin
    Bae, Ki Yoon
    Kim, Hee Joong
    Lee, Jin Hong
    Kim, Dong-Gyun
    Yoon, Woo Young
    Lee, Jong-Chan
    CHEMSUSCHEM, 2015, 8 (24) : 4133 - 4138
  • [24] Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries
    Lua, Fei
    Li, Gaoran
    Yu, Yang
    Gao, Xinpei
    Zheng, Liqiang
    Chen, Zhongwei
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [25] Deciphering and Integrating Functionalized Side Chains for High Ion-Conductive Elastic Ternary Copolymer Solid-State Electrolytes for Safe Lithium Metal Batteries
    Xu, Hongfei
    Yang, Jinlin
    Niu, Yuxiang
    Hou, Xunan
    Sun, Zejun
    Jiang, Chonglai
    Xiao, Yukun
    He, Chaobin
    Yang, Shubin
    Li, Bin
    Chen, Wei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (36)
  • [26] Single Lithium-Ion Conducting Solid Polymer Electrolytes
    Zhang Heng
    Zheng Liping
    Nie Jin
    Huang Xuejie
    Zhou Zhibin
    PROGRESS IN CHEMISTRY, 2014, 26 (06) : 1005 - 1020
  • [27] A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries
    Liu, Ruiping
    Wu, Zirui
    He, Peng
    Fan, Haoyu
    Huang, Zeya
    Zhang, Lei
    Chang, Xinshuang
    Liu, Hang
    Wang, Chang-an
    Li, Yutao
    JOURNAL OF MATERIOMICS, 2019, 5 (02) : 185 - 194
  • [28] Porous Coordination Polymers as Active Fillers for Solid Polymer Electrolytes of Lithium-Ion Batteries
    Ponam
    Singh, Parshuram
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2022, 11 (01) : 34 - 45
  • [29] Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries
    Kalaga, Kaushik
    Rodrigues, Marco-Tulio F.
    Gullapalli, Hemtej
    Babu, Ganguli
    Arava, Leela Mohana Reddy
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (46) : 25777 - 25783
  • [30] Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries
    Zhang, Dechao
    Zhang, Long
    Yang, Kun
    Wang, Hongqiang
    Yu, Chuang
    Xu, Di
    Xu, Bo
    Wang, Li-Min
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) : 36886 - 36896