Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries

被引:35
|
作者
Kim, Jin Il [1 ]
Choi, Young Gyun [1 ]
Ahn, Yeonho [2 ]
Kim, Dukjoon [2 ]
Park, Jong Hyeok [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
[2] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Solid polymer electrolyte; UV-Curing polymerization; Ionic pathway; Electrochemical stability; ELECTRIC VEHICLES; STATE; PERFORMANCE; CARBONATE); HYBRID;
D O I
10.1016/j.memsci.2020.118771
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solid electrolyte-based lithium-ion batteries (LIBs) have enormous potential to replace conventional LIBs with flammable liquid electrolytes. However, most solid electrolytes show low ionic conductivity and poor interfacial properties with electrodes, preventing them from reaching the level of conventional liquid electrolyte systems with separators. Herein, we optimized the formation of an ion-conductive pathway in a UV-cured solid polymer electrolyte (USPE) via a semi-interpenetrating polymer network with a minimal liquid content. The USPE consists of a UV-curable hard matrix (trimethylolpropane ethoxylate triacrylate, ETPTA) as a backbone film with negligible ionic conductivity and an optimized ionic channel with an ion-solvated gel polymer (Li+/PVdF-HFP) with a minimal liquid content for boosting the Li+ conduction. The hybrid solid-state film provides high ionic conductivity (up to 85%) relative to commercial liquid electrolyte systems and a stable electrochemical window. We also applied the same USPE with Na+ for solid electrolyte-based sodium ion batteries, and similar positive effects were also observed. Going another step forward, both the PVdF-HFP/ETPTA ratio and the HFP content in the PVdF-HFP are critical gel polymer additives for generating reinforced Li+ ion pathways in USPE.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries
    Rong, Zhuolin
    Sun, Yu
    Zhao, Qiancheng
    Cheng, Fangyi
    Zhang, Wangqing
    Chen, Jun
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [2] Fluoride Ion Conductive Polymer Electrolytes for All-solid-state Fluoride Shuttle Batteries
    Takahashi, Keitaro
    Yokoo, Atsuya
    Kaneko, Yukari
    Abe, Takeshi
    Seki, Shiro
    ELECTROCHEMISTRY, 2020, 88 (04) : 310 - 313
  • [3] Solid hybrid electrolytes based on conductive oxides and polymer electrolytes for all-solid-lithium batteries
    Tian, Leiwu
    Kim, Ji-Wan
    Kim, Dong-Won
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (02) : 455 - 484
  • [4] All-Solid Flexible Fiber-Shaped Lithium Ion Batteries
    Qu, Hang
    Lu, Xin
    Skorobogatiy, Maksim
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (03) : A688 - A695
  • [5] Electronically Conductive Polymer Enhanced Solid-State Polymer Electrolytes for All-Solid-State Lithium Batteries
    Smdani, Md Gulam
    Hasan, Md Wahidul
    Razzaq, Amir Abdul
    Xing, Weibing
    ENERGIES, 2024, 17 (17)
  • [6] Review on solid electrolytes for all-solid-state lithium-ion batteries
    Zheng, Feng
    Kotobuki, Masashi
    Song, Shufeng
    Lai, Man On
    Lu, Li
    JOURNAL OF POWER SOURCES, 2018, 389 : 198 - 213
  • [7] Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries
    Chen, Guanghai
    Bai, Ying
    Gao, Yongsheng
    Wu, Feng
    Wu, Chuan
    ACTA PHYSICO-CHIMICA SINICA, 2020, 36 (05)
  • [8] Polymer-in-salt solid electrolytes for lithium-ion batteries
    Yi, Chengjun
    Liu, Wenyi
    Li, Linpo
    Dong, Haoyang
    Liu, Jinping
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (06)
  • [9] Highly ion-conductive solid polymer electrolytes based on polyethylene non-woven matrix
    Lee, Yong Min
    Ko, Dong-Hyun
    Lee, Jun Young
    Park, Jung-Ki
    ELECTROCHIMICA ACTA, 2006, 52 (04) : 1582 - 1587
  • [10] Solid polymer electrolyte for lithium ion batteries
    Wang H.
    Xie W.
    Guo C.
    Cailiao Daobao/Materials Review, 2016, 30 (04): : 33 - 36