An organic-inorganic hybrid hole transport bilayer for improving the performance of perovskite solar cells

被引:10
|
作者
Liu, Guanchen [1 ]
Liu, Zhihai [2 ]
Wang, Lei [3 ]
Xie, Xiaoyin [1 ,4 ]
机构
[1] Hubei Polytech Univ, Sch Chem & Chem Technol, Huangshi 435003, Hubei, Peoples R China
[2] Yantai Univ, Sch Optoelect Informat Sci & Technol, Yantai 264005, Shandong, Peoples R China
[3] Beijing Technol & Business Univ, Dept Packing Engn, Beijing 100048, Peoples R China
[4] Gachon Univ, Dept Phys, Gyeonggi 13120, South Korea
基金
新加坡国家研究基金会;
关键词
Hole transport layer; Molybdenum trioxide; Poly(triarylamine); Perovskite solar cells; Performance; LEAD-ACETATE; EFFICIENT; LAYER;
D O I
10.1016/j.chemphys.2020.111061
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we improved the performance of pemvskite solar cells (PSCs) by employing an organic-inorganic hybrid hole transport bilayer of poly(triarylamine)/molybdenum trioxide (PTAA/MoO3). We find that, by depositing a thin MoO3 layer onto PTAA, the charge transport property of the PSCs can be improved. Consequently, average power conversion efficiency (PCE) of the PSCs was significantly improved from 14.2 to 16.8%, which was mainly induced from the largely enhanced short-circuit current density and fill factor. The best PSC from the 3 nm MoO3 based group showed a champion PCE of 17.1% with a stable power output and negligible hysteresis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Organic-inorganic hybrid material for hole transport in inverted perovskite solar cells
    Tingare, Yogesh S.
    Su, Chaochin
    Hsu, Ya-Chun
    Lai, Ning-Wei
    Wang, Wan-Chun
    Lin, Xiang-Ching
    Lai, Penh-Wen
    Yang, Hsuan-Yu
    Lew, Xin-Rui
    Li, Wen-Ren
    CHEMSUSCHEM, 2024, 17 (10)
  • [2] Organic-inorganic hybrid hole transport layers with SnS doping boost the performance of perovskite solar cells
    Zheng, Xiaolu
    Wang, Haibing
    Ye, Feihong
    Chen, Cong
    Ke, Weijun
    Zhang, Wenjing
    He, Chuanxin
    Tai, Yanlong
    Fang, Guojia
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 637 - 645
  • [3] Organic-Inorganic Hybrid Perovskite Solar Cells Using Hole Transport Layer Based on α-Naphthyl Diamine Derivative
    Eze, Vincent Obiozo
    Mori, Tatsuo
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2016, 29 (04) : 581 - 586
  • [4] Photophysics of organic-inorganic hybrid perovskite solar cells
    Tahara, Hirokazu
    Handa, Taketo
    Kanemitsu, Yoshihiko
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES VII, 2018, 10527
  • [5] Hysteresis in organic-inorganic hybrid perovskite solar cells
    Elumalai, Naveen Kumar
    Uddin, Ashraf
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 : 476 - 509
  • [6] Organic-Inorganic Hybrid Electron Transport Layer for Rigid or Flexible Perovskite Solar Cells under Ambient Conditions
    Qiu, Linlin
    Chen, Liang
    Chen, Wei-Hsiang
    Yuan, Yongfeng
    Song, Lixin
    Bai, Bing
    Su, Zhiqin
    Du, Pingfan
    Xiong, Jie
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (20) : 6826 - 6834
  • [7] Nanomechanical Approach for Flexibility of Organic-Inorganic Hybrid Perovskite Solar Cells
    Ahn, Seung-min
    Jung, Eui Dae
    Kim, Si-Hoon
    Kim, Hangeul
    Lee, Sukbin
    Song, Myoung Hoon
    Kim, Ju-Young
    NANO LETTERS, 2019, 19 (06) : 3707 - 3715
  • [8] Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells
    Yang, Zhibin
    Rajagopal, Adharsh
    Jen, Alex K. -Y.
    ADVANCED MATERIALS, 2017, 29 (47)
  • [9] Interfacial fracture of hybrid organic-inorganic perovskite solar cells
    Ichwani, Reisya
    Koech, Richard
    Oyewole, Oluwaseun K.
    Huda, Adri
    Oyewole, Deborah O.
    Cromwell, Jaya
    Martin, Julia L.
    Grimm, Ronald L.
    Soboyejo, Winston O.
    EXTREME MECHANICS LETTERS, 2022, 50
  • [10] Ambient Fabrication of Organic-Inorganic Hybrid Perovskite Solar Cells
    Zhang, Yuan
    Kirs, Ashleigh
    Ambroz, Filip
    Lin, Chieh-Ting
    Bati, Abdulaziz S. R.
    Parkin, Ivan P.
    Shapter, Joseph G.
    Batmunkh, Munkhbayar
    Macdonald, Thomas J.
    SMALL METHODS, 2021, 5 (01)