CRISPR/Cas9

被引:4
|
作者
Mizuno, Naoaki [1 ]
Mizutani, Eiji [1 ]
Sato, Hideyuki [1 ]
Kasai, Mariko [1 ]
Nakauchi, Hiromitsu [1 ,2 ]
Yamaguchi, Tomoyuki [1 ]
机构
[1] Univ Tokyo, Inst Med Sci, Div Stem Cell Therapy, Minato Ku, Tokyo, Japan
[2] Stanford Univ, Sch Med, Dept Genet, Inst Stem Cell Biol & Regenerat Med, Stanford, CA USA
来源
BIO-PROTOCOL | 2019年 / 9卷 / 13期
关键词
CRISPR/Cas9; Adeno-associated viral vector; Trans-zona pellucida; Intra-embryo genome editing; Ribonucleoprotein electroporation; Large fragment knock-in; ELECTROPORATION;
D O I
10.21769/BioProtoc.3295
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intra-embryo genome editing by CRISPR/Cas9 has enabled rapid generation of gene knockout animals. However, large fragment knock-in directly into embryos' genome is still difficult, especially without microinjection of donor DNA. Viral vectors are good transporters of knock-in donor DNA for cell lines, but seemed unsuitable for pre-implantation embryos with zona pellucida, glycoprotein membrane surrounding early embryos. We found adeno-associated virus (AAV) can infect zygotes of various mammals through intact zona pellucida. AAV-mediated donor DNA delivery following Cas9 ribonucleoprotein electroporation enables large fragment knock-in without micromanipulation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] CRISPR/Cas9 therapeutics: progress and prospects
    Li, Tianxiang
    Yang, Yanyan
    Qi, Hongzhao
    Cui, Weigang
    Zhang, Lin
    Fu, Xiuxiu
    He, Xiangqin
    Liu, Meixin
    Li, Pei-feng
    Yu, Tao
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023, 8 (01)
  • [22] Applications of the CRISPR/Cas9 system in murine cancer modeling
    Zuckermann, Marc
    Kawauchi, Daisuke
    Gronych, Jan
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2017, 16 (01) : 25 - 33
  • [23] CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein
    Tang, Lichun
    Zeng, Yanting
    Du, Hongzi
    Gong, Mengmeng
    Peng, Jin
    Zhang, Buxi
    Lei, Ming
    Zhao, Fang
    Wang, Weihua
    Li, Xiaowei
    Liu, Jianqiao
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (03) : 525 - 533
  • [24] Examination of CRISPR/Cas9 design tools and the effect of target site accessibility on Cas9 activity
    Lee, Ciaran M.
    Davis, Timothy H.
    Bao, Gang
    EXPERIMENTAL PHYSIOLOGY, 2018, 103 (04) : 456 - 460
  • [25] Recent Advances in CRISPR/Cas9 Delivery Strategies
    Yip, Bon Ham
    BIOMOLECULES, 2020, 10 (06)
  • [26] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [27] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [28] The landscape of CRISPR/Cas9 for inborn errors of metabolism
    Leal, Andres Felipe
    Fnu, Nidhi
    Benincore-Florez, Eliana
    Herreno-Pachon, Angelica Maria
    Echeverri-Pena, Olga Yaneth
    Almeciga-Diaz, Carlos Javier
    Tomatsu, Shunji
    MOLECULAR GENETICS AND METABOLISM, 2023, 138 (01)
  • [29] The evolution of CRISPR/Cas9 and their cousins: hope or hype?
    Chaudhary, Kulbhushan
    Chattopadhyay, Anirudha
    Pratap, Dharmendra
    BIOTECHNOLOGY LETTERS, 2018, 40 (03) : 465 - 477
  • [30] The expanding footprint of CRISPR/Cas9 in the plant sciences
    Schaeffer, Scott M.
    Nakata, Paul A.
    PLANT CELL REPORTS, 2016, 35 (07) : 1451 - 1468